Two weight $\Phi$-inequalities for the Hardy operator, Hardy-Littlewood maximal operator, and fractional integrals
HTML articles powered by AMS MathViewer
- by Qinsheng Lai
- Proc. Amer. Math. Soc. 118 (1993), 129-142
- DOI: https://doi.org/10.1090/S0002-9939-1993-1123665-4
- PDF | Request permission
Abstract:
Suppose $\Phi$ is an appropriate Young’s function and $w(x),v(x)$ are nonnegative locally integrable functions. Let $T$ denote one of three linear operators of special importance that map suitable functions on ${R^n}$ into functions on ${R^n}$. For the Hardy operator $T$, we study the inequality \[ \int _0^\infty {\Phi (|Tf(x)|)w(x) dx \leqslant C\int _0^\infty {\Phi (|f(x)|)v(x) dx} } \] and for the Hardy-Littlewood maximal operator or fractional integrals $T$, we discuss the inequalities \[ \int _{{R^n}} {\Phi (|T(fv)(x)|)w(x) dx \leqslant C\int _{{R^n}} {\Phi (|f(x)|)v(x) dx.} } \] In all cases we obtain the necessary and sufficient conditions.References
- C. Fefferman and E. M. Stein, Some maximal inequalities, Amer. J. Math. 93 (1971), 107–115. MR 284802, DOI 10.2307/2373450
- José García-Cuerva and José L. Rubio de Francia, Weighted norm inequalities and related topics, North-Holland Mathematics Studies, vol. 116, North-Holland Publishing Co., Amsterdam, 1985. Notas de Matemática [Mathematical Notes], 104. MR 807149
- R. A. Kerman and A. Torchinsky, Integral inequalities with weights for the Hardy maximal function, Studia Math. 71 (1981/82), no. 3, 277–284. MR 667316, DOI 10.4064/sm-71-3-277-284
- M. A. Krasnosel′skiĭ and Ja. B. Rutickiĭ, Convex functions and Orlicz spaces, P. Noordhoff Ltd., Groningen, 1961. Translated from the first Russian edition by Leo F. Boron. MR 0126722
- Benjamin Muckenhoupt, Hardy’s inequality with weights, Studia Math. 44 (1972), 31–38. MR 311856, DOI 10.4064/sm-44-1-31-38
- Francisco J. Ruiz and José L. Torrea, A unified approach to Carleson measures and $A_p$ weights. II, Pacific J. Math. 120 (1985), no. 1, 189–197. MR 808937, DOI 10.2140/pjm.1985.120.189 E. T. Sawyer and R. L. Wheeden, Weighted inequalities for fractional integrals on Euclidean and homogeneous spaces (to appear).
- Eric T. Sawyer, A characterization of two weight norm inequalities for fractional and Poisson integrals, Trans. Amer. Math. Soc. 308 (1988), no. 2, 533–545. MR 930072, DOI 10.1090/S0002-9947-1988-0930072-6
- Eric T. Sawyer, A characterization of a two-weight norm inequality for maximal operators, Studia Math. 75 (1982), no. 1, 1–11. MR 676801, DOI 10.4064/sm-75-1-1-11
Bibliographic Information
- © Copyright 1993 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 118 (1993), 129-142
- MSC: Primary 42B25; Secondary 47B38, 47G10
- DOI: https://doi.org/10.1090/S0002-9939-1993-1123665-4
- MathSciNet review: 1123665