Uniformly convex functions and a corresponding class of starlike functions
HTML articles powered by AMS MathViewer
- by Frode Rønning
- Proc. Amer. Math. Soc. 118 (1993), 189-196
- DOI: https://doi.org/10.1090/S0002-9939-1993-1128729-7
- PDF | Request permission
Abstract:
We investigate starlike functions $f(z) = z + \sum \nolimits _{k = 2}^\infty {{a_k}{z^k}}$ with the property that $zf’(z)/f(z)$ lies inside a certain parabola. These functions are closely related to a class of functions called uniformly convex and recently introduced by Goodman. We give some particular examples of functions having the required properties, and we give upper bounds on the coefficients and the modulus $|f(z)|$ of the functions in the class.References
- M. Abramowitz and I. A. Stegun, Handbook of mathematical functions, Dover, New York, 1970.
- D. A. Brannan and W. E. Kirwan, On some classes of bounded univalent functions, J. London Math. Soc. (2) 1 (1969), 431–443. MR 251208, DOI 10.1112/jlms/s2-1.1.431
- D. A. Brannan, J. Clunie, and W. E. Kirwan, Coefficient estimates for a class of star-like functions, Canadian J. Math. 22 (1970), 476–485. MR 260994, DOI 10.4153/CJM-1970-055-8
- A. W. Goodman, On uniformly convex functions, Ann. Polon. Math. 56 (1991), no. 1, 87–92. MR 1145573, DOI 10.4064/ap-56-1-87-92
- A. W. Goodman, On uniformly starlike functions, J. Math. Anal. Appl. 155 (1991), no. 2, 364–370. MR 1097287, DOI 10.1016/0022-247X(91)90006-L
- Christian Pommerenke, Univalent functions, Studia Mathematica/Mathematische Lehrbücher, Band XXV, Vandenhoeck & Ruprecht, Göttingen, 1975. With a chapter on quadratic differentials by Gerd Jensen. MR 0507768
- Werner Rogosinski, On the coefficients of subordinate functions, Proc. London Math. Soc. (2) 48 (1943), 48–82. MR 8625, DOI 10.1112/plms/s2-48.1.48
- Albert Schild, On a class of univalent, star shaped mappings, Proc. Amer. Math. Soc. 9 (1958), 751–757. MR 95954, DOI 10.1090/S0002-9939-1958-0095954-5
- E. T. Whittaker and G. N. Watson, A course of modern analysis, Cambridge Mathematical Library, Cambridge University Press, Cambridge, 1996. An introduction to the general theory of infinite processes and of analytic functions; with an account of the principal transcendental functions; Reprint of the fourth (1927) edition. MR 1424469, DOI 10.1017/CBO9780511608759
Bibliographic Information
- © Copyright 1993 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 118 (1993), 189-196
- MSC: Primary 30C45; Secondary 30C50
- DOI: https://doi.org/10.1090/S0002-9939-1993-1128729-7
- MathSciNet review: 1128729