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HOROCYCLES ON RIEMANN SURFACES

MIKA SEPPALA AND TUOMAS SORVALI

(Communicated by Cliiford J. Earle, Jr.)

Abstract. By the Collar Theorem, every puncture on a hyperbolic Riemann

surface with punctures has a horocyclic neighborhood of area 2. Furthermore

two such neighborhoods associated to different punctures are disjoint.

This result can be improved if we omit the condition that horocyclic neigh-

borhoods of different punctures must be disjoint. Using arguments of the sec-

ond author we show, in this paper, that each puncture of a hyperbolic Riemann

surface has a horocyclic neighborhood of area 4.

1. Preliminaries

We consider hyperbolic Riemann surfaces X of finite type. By the Uni-

formization we may express X as U/G, where U is the upper half-plane
and G is a Fuchsian group. The hyperbolic metric, given by the line element

\dz\/lm z induces, on the Riemann surface X, a metric of constant curvature
-1.

If X is not compact, then it has either ideal boundary components or punc-

tures (or both). We focus our attention on punctures of X here. They corre-

spond to the fixed-points of parabolic elements of the group G.

Let p be a puncture of X. By conjugation we may assume that the parabolic

element corresponding to p is gw(z) = z + co. (By an additional conjugation

we could even assume that co = 1 here.)
By saying that gm corresponds to p we implicitly assume also that gw is

primitive, i.e., that it satisfies the following condition:

3/7 e G A 3n , rn £ Z : g^ = hm => n/m £ Z.

For X > 0 let 77A = {z | Im z > X} . Assume that X is such that the following

holds:

(1) g(H,)nH^0^g£(gw),

where (gm) is the group generated by the transformation gw .

Condition (1) implies that 77^ projects onto a punctured disk on X that is a

neighborhood of the puncture p . Such a set is called a horocyclic neighborhood

of the puncture p.
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The hyperbolic area of this horocyclic neighborhood of p equals the hyper-

bolic area of the infinite half-strip

{z\ lmz>X, 0< Rez<co},

which is co/X.

2. Large horocyclic neighborhoods of punctures

In the case we are now considering, G is a Fuchsian group that acts freely in

the upper half-plane U. This means that the group G does not contain elliptic

elements. Let g £ G, g(oo) ^ co, and let 1(g) denote the isometric circle of

g. The center of 1(g) lies on the real axis, g(I(g)) = I(g~l), and 1(g) and

I(g~x) have the same radius. If g is parabolic, then 1(g) and I(g~x) are

tangent to each other at the fixed point of g, otherwise I(g)(ll(g~x) = 0.

Lemma 2.1. The difference g(z) - z is real for a point z in the upper half-plane

if and only if z £ 1(g).

This lemma follows directly from the geometry of the action of the Mobius

transformation g and the definition of the isometric circle. The proof is left

to the reader.

Lemma 2.2. Let g £ G be such that g(oo) £ oo. If G contains the translation

goj: z t-> z + co,  then (g(z) - z)/co is not an integer for any z £ U.

Proof. Suppose that g(z) - z = nco for some integer 77 and z £ U. Then

S~l ° gw nxes z- ^ follows that g~x o gw is elliptic, which is not possible by

our assumptions.   □

Lemma 2.3. Suppose that gw : z h-> z + co is in G. If g £ G does not fix 00,

then the radius rg of 1(g) satisfies rg < co/4.

Proof. By geometry

(2) max \g(z) - z\ - min \g(z) - z\ = 4rg.
zei(g) zei(g)

Now (g(z) - z)/co is real on 7(g) by Lemma 2.1. If the total variation of

(g(z) - z)/co along 1(g) were more than 1, then (g(z) - z)/co would neces-

sarily take an integer value at some point in 1(g). By Lemma 2.2 this is not

possible. We conclude, therefore, that

(3) max|g(z)-z|-min|g(z)-z|<l.
zei(g)       co zei(g)       co

Inequality (3) together with equation (2) now implies the lemma.   D

Theorem 2.4. Assume that the group G contains, besides the identity, only hyper-

bolic and parabolic Mobius transformations mapping the upper half-plane onto

itself. Assume further that gx(z) = z + co is a primitive element of the group G.

Let g £ G be such that g(oo) ^00. If Im z > co/4, then Im g(z) < co/4. The

number co/4 is the smallest possible.

Proof. The first part of the statement follows directly from Lemma 2.3. To

prove that co/4 is the smallest number with this property, assume that co =

1  and let go be the transformation  z i-> z/(4z + 1) and G\  be the group
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generated by go and gx. Then Gx is a Fuchsian group without elliptic elements

and g0((-l + 0/4) = (l + /)/4.   n

Theorem 2.4 now immediately implies the following result:

Theorem 2.5. Let X be a hyperbolic Riemann surface with punctures. Each

puncture of X has a horocyclic neighborhood ofi area 4. The inner boundary

curve of this horocycle has length 4.

Observe that area-4 horocyclic neighborhoods of punctures need not be dis-

joint. The group Gx provides an example of this: the area-4 horocycle of gx

is the half-plane Im z > 1/4 while the area-4 horocycle for go is the open

Euclidean disk of radius 1/2 and center i/2. They overlap. Observe also that

simple closed geodesies can enter area-4 horocyclic neighborhoods of punctures.

We thank the referee for this observation.

By the above considerations, it is obvious that we can always find disjoint

area-2 horocycles at punctures. Simple closed curves do not enter these area-2

horocyclic neighborhoods. But this, on the other hand, is already well known

(see, e.g., [4, 1.2, pp. 507-508]).
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