The second normal bordism group of a space pair
HTML articles powered by AMS MathViewer
- by Gui Song Li
- Proc. Amer. Math. Soc. 118 (1993), 259-262
- DOI: https://doi.org/10.1090/S0002-9939-1993-1139479-5
- PDF | Request permission
Abstract:
We determine the second normal bordism groups of space pairs in terms of their homology groups except for certain group extension problems.References
- Jean-Pierre Dax, Étude homotopique des espaces de plongements, Ann. Sci. École Norm. Sup. (4) 5 (1972), 303–377 (French). MR 321110
- U. Kaiser and B. H. Li, Enumeration of immersions of $m$-manifolds in $(2m-2)$-manifolds by the singularity method, Differential topology (Siegen, 1987) Lecture Notes in Math., vol. 1350, Springer, Berlin, 1988, pp. 171–187. MR 979340, DOI 10.1007/BFb0081475
- Ulrich Koschorke, Vector fields and other vector bundle morphisms—a singularity approach, Lecture Notes in Mathematics, vol. 847, Springer, Berlin, 1981. MR 611333 —, The singularity method and immersions of $m$-manifolds into manifolds of dimension $2m - 2,\;2m - 3,\;2m - 4$, Lecture Notes in Math., vol. 1350, Springer-Verlag, Berlin and New York, 1988, pp. 188-212.
- Bang He Li, On the Koschorke normal bordism sequence, Sci. China Ser. A 35 (1992), no. 11, 1294–1305. MR 1223951 —, Embeddings of $n$-manifolds into $2n$-manifolds, preprint. B.-H. Li and P. Zhang, On isotopy classification of embeddings of $n$-manifolds into $2n$-manifolds, preprint.
- Gui Song Li, On immersions in bordism classes, Math. Ann. 291 (1991), no. 2, 373–382. MR 1129374, DOI 10.1007/BF01445214 C. Olk, Immersionen von Mannigfaltigkeiten in Euklidische Räume, Dissertation, Siegen, 1980.
- Hans Anton Salomonsen, Bordism and geometric dimension, Math. Scand. 32 (1973), 87–111. MR 324718, DOI 10.7146/math.scand.a-11447 —, On the existence and classification of differential embeddings in the metastable range, Mimeographed Notes, Aärhus Univ., 1973.
Bibliographic Information
- © Copyright 1993 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 118 (1993), 259-262
- MSC: Primary 57R90
- DOI: https://doi.org/10.1090/S0002-9939-1993-1139479-5
- MathSciNet review: 1139479