## A counterexample to the equivariant simple loop conjecture

HTML articles powered by AMS MathViewer

- by Karin Usadi
- Proc. Amer. Math. Soc.
**118**(1993), 321-329 - DOI: https://doi.org/10.1090/S0002-9939-1993-1150656-X
- PDF | Request permission

## Abstract:

In 1985 Gabai gave a complete proof of the Simple Loop Conjecture, which states that any map between closed surfaces, which does not induce an injection on the level of ${\pi _1}$, takes some noncontractible simple loop in the domain surface to a contractible loop in the target surface. In this paper we study an analogous result for the category of surfaces equipped with finite group actions and the maps which commute with the group structures (the "equivariant" maps). We find a counterexample to the equivariant analog of the Simple Loop Conjecture for the cyclic group of order $3$. The proof uses an equivariant analog of a theorem of Edmonds which gives a standard geometric representative for any homotopy class of surface maps of nonzero degree.## References

- Allan L. Edmonds,
*Deformation of maps to branched coverings in dimension two*, Ann. of Math. (2)**110**(1979), no. 1, 113–125. MR**541331**, DOI 10.2307/1971246 - Allan L. Edmonds,
*Surface symmetry. I*, Michigan Math. J.**29**(1982), no. 2, 171–183. MR**654478** - Glen E. Bredon,
*Introduction to compact transformation groups*, Pure and Applied Mathematics, Vol. 46, Academic Press, New York-London, 1972. MR**0413144** - James Eells Jr. and J. H. Sampson,
*Harmonic mappings of Riemannian manifolds*, Amer. J. Math.**86**(1964), 109–160. MR**164306**, DOI 10.2307/2373037 - David Gabai,
*The simple loop conjecture*, J. Differential Geom.**21**(1985), no. 1, 143–149. MR**806708** - David Gabai and William H. Kazez,
*The classification of maps of surfaces*, Bull. Amer. Math. Soc. (N.S.)**14**(1986), no. 2, 283–286. MR**828827**, DOI 10.1090/S0273-0979-1986-15442-X - Philip Hartman,
*On homotopic harmonic maps*, Canadian J. Math.**19**(1967), 673–687. MR**214004**, DOI 10.4153/CJM-1967-062-6 - John Hempel,
*$3$-Manifolds*, Annals of Mathematics Studies, No. 86, Princeton University Press, Princeton, N. J.; University of Tokyo Press, Tokyo, 1976. MR**0415619** - Hellmuth Kneser,
*Glättung von Flächenabbildungen*, Math. Ann.**100**(1928), no. 1, 609–617 (German). MR**1512504**, DOI 10.1007/BF01448865 - Hellmuth Kneser,
*Die kleinste Bedeckungszahl innerhalb einer Klasse von Flächenabbildungen*, Math. Ann.**103**(1930), no. 1, 347–358 (German). MR**1512626**, DOI 10.1007/BF01455699 - Jakob Nielsen,
*Untersuchungen zur Topologie der geschlossenen zweiseitigen Flächen*, Acta Math.**50**(1927), no. 1, 189–358 (German). MR**1555256**, DOI 10.1007/BF02421324 - Richard Schoen and Shing Tung Yau,
*On univalent harmonic maps between surfaces*, Invent. Math.**44**(1978), no. 3, 265–278. MR**478219**, DOI 10.1007/BF01403164 - Richard Skora,
*The degree of a map between surfaces*, Math. Ann.**276**(1987), no. 3, 415–423. MR**875337**, DOI 10.1007/BF01450838 - Edwin H. Spanier,
*Algebraic topology*, Springer-Verlag, New York-Berlin, 1981. Corrected reprint. MR**666554**
K. Usadi, - Heiner Zieschang,
*Finite groups of mapping classes of surfaces*, Lecture Notes in Mathematics, vol. 875, Springer-Verlag, Berlin, 1981. MR**643627**, DOI 10.1007/BFb0090465 - Heiner Zieschang, Elmar Vogt, and Hans-Dieter Coldewey,
*Surfaces and planar discontinuous groups*, Lecture Notes in Mathematics, vol. 835, Springer, Berlin, 1980. Translated from the German by John Stillwell. MR**606743**

*On the classification of equivariant surface maps*, Ph.D. dissertation, Indiana University at Bloomington, August, 1991.

## Bibliographic Information

- © Copyright 1993 American Mathematical Society
- Journal: Proc. Amer. Math. Soc.
**118**(1993), 321-329 - MSC: Primary 57M12; Secondary 57M05, 57M60
- DOI: https://doi.org/10.1090/S0002-9939-1993-1150656-X
- MathSciNet review: 1150656