Quasi-isomorphism invariants for two classes of finite rank Butler groups
HTML articles powered by AMS MathViewer
- by D. Arnold and C. Vinsonhaler
- Proc. Amer. Math. Soc. 118 (1993), 19-26
- DOI: https://doi.org/10.1090/S0002-9939-1993-1157997-0
- PDF | Request permission
Abstract:
A complete set of numerical quasi-isomorphism invariants is given for a class of torsion-free abelian groups containing all groups of the form $\mathcal {G}[\mathcal {A}]$, where $\mathcal {A} = ({A_1}, \ldots ,{A_n})$ is an $n$-tuple of subgroups of the additive rationals and $\mathcal {G}[\mathcal {A}]$ is the cokernel of the diagonal embedding $\bigcap {{A_i} \to \oplus {A_i}}$. This classification and its dual include, as special cases, earlier classifications of strongly indecomposable groups of the form $\mathcal {G}[\mathcal {A}]$ and their duals.References
- D. Arnold, F. Richman, and C. Vinsonhaler, Representations of finite posets and valuated groups, J. Algebra 155 (1993), no. 1, 110–126. MR 1206624, DOI 10.1006/jabr.1993.1033
- D. Arnold and C. Vinsonhaler, Representing graphs for a class of torsion-free abelian groups, Abelian group theory (Oberwolfach, 1985) Gordon and Breach, New York, 1987, pp. 309–332. MR 1011321
- D. Arnold and C. Vinsonhaler, Quasi-isomorphism invariants for a class of torsion-free abelian groups, Houston J. Math. 15 (1989), no. 3, 327–340. MR 1032393
- D. Arnold and C. Vinsonhaler, Invariants for a class of torsion-free abelian groups, Proc. Amer. Math. Soc. 105 (1989), no. 2, 293–300. MR 935102, DOI 10.1090/S0002-9939-1989-0935102-X
- D. M. Arnold and C. I. Vinsonhaler, Duality and invariants for Butler groups, Pacific J. Math. 148 (1991), no. 1, 1–10. MR 1091526
- D. Arnold and C. Vinsonhaler, Pure subgroups of finite rank completely decomposable groups. II, Abelian group theory (Honolulu, Hawaii, 1983) Lecture Notes in Math., vol. 1006, Springer, Berlin, 1983, pp. 97–143. MR 722614, DOI 10.1007/BFb0103698
- D. M. Arnold and C. I. Vinsonhaler, Invariants for classes of indecomposable representations of finite posets, J. Algebra 147 (1992), no. 1, 245–264. MR 1154682, DOI 10.1016/0021-8693(92)90260-S
- D. M. Arnold and C. I. Vinsonhaler, Isomorphism invariants for abelian groups, Trans. Amer. Math. Soc. 330 (1992), no. 2, 711–724. MR 1040040, DOI 10.1090/S0002-9947-1992-1040040-5 —, Finite rank Butler groups, a survey of recent results, Proceedings of the Curacao Conference on Abelian groups (to appear).
- Laszlo Fuchs and Claudia Metelli, On a class of Butler groups, Manuscripta Math. 71 (1991), no. 1, 1–28. MR 1094735, DOI 10.1007/BF02568390
- Paul Hill and Charles Megibben, The classification of certain Butler groups, J. Algebra 160 (1993), no. 2, 524–551. MR 1244926, DOI 10.1006/jabr.1993.1199
- E. L. Lady, Extension of scalars for torsion free modules over Dedekind domains, Symposia Mathematica, Vol. XXIII (Conf. Abelian Groups and their Relationship to the Theory of Modules, INDAM, Rome, 1977) Academic Press, London-New York, 1979, pp. 287–305. MR 565611 W. Y. Lee, Co-representing graphs for a class of torsion-free abelian groups, Ph.D. thesis, New Mexico State Univ., 1986.
- Fred Richman, An extension of the theory of completely decomposable torsion-free abelian groups, Trans. Amer. Math. Soc. 279 (1983), no. 1, 175–185. MR 704608, DOI 10.1090/S0002-9947-1983-0704608-X
Bibliographic Information
- © Copyright 1993 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 118 (1993), 19-26
- MSC: Primary 20K15
- DOI: https://doi.org/10.1090/S0002-9939-1993-1157997-0
- MathSciNet review: 1157997