A transitivity theorem for algebras of elementary operators
HTML articles powered by AMS MathViewer
- by Bojan Magajna
- Proc. Amer. Math. Soc. 118 (1993), 119-127
- DOI: https://doi.org/10.1090/S0002-9939-1993-1158004-6
- PDF | Request permission
Abstract:
Let $\mathcal {A}$ be a ${C^{\ast }}$-algebra and $\mathcal {E}$ the algebra of all elementary operators on $\mathcal {A}$, and let $\vec a = ({a_1}, \ldots ,{a_n}),\;\vec b = ({b_1}, \ldots ,{b_n}) \in {\mathcal {A}^n}$. It is proved that $\vec b$ is contained in the closure of the set $\{ (E{a_1}, \ldots ,E{a_n}):E \in \mathcal {E}\}$ if and only if each complex linear combination $\sum \nolimits _{j = 1}^n {{\lambda _j}} {b_j}$ is contained in the closed two-sided ideal generated by $\sum \nolimits _{j = 1}^n {{\lambda _j}} {a_j}$. In particular, a bounded linear operator on $\mathcal {A}$ preserves all closed two-sided ideals if and only if it is in the strong closure of $\mathcal {E}$.References
- Constantin Apostol and Lawrence Fialkow, Structural properties of elementary operators, Canad. J. Math. 38 (1986), no.Β 6, 1485β1524. MR 873420, DOI 10.4153/CJM-1986-072-6
- Lawrence A. Fialkow, The range inclusion problem for elementary operators, Michigan Math. J. 34 (1987), no.Β 3, 451β459. MR 911817, DOI 10.1307/mmj/1029003624
- C. K. Fong and A. R. Sourour, On the operator identity $\sum \,A_{k}XB_{k}\equiv 0$, Canadian J. Math. 31 (1979), no.Β 4, 845β857. MR 540912, DOI 10.4153/CJM-1979-080-x
- Richard V. Kadison and John R. Ringrose, Fundamentals of the theory of operator algebras. Vol. I, Pure and Applied Mathematics, vol. 100, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York, 1983. Elementary theory. MR 719020
- David R. Larson and Ahmed R. Sourour, Local derivations and local automorphisms of ${\scr B}(X)$, Operator theory: operator algebras and applications, Part 2 (Durham, NH, 1988) Proc. Sympos. Pure Math., vol. 51, Amer. Math. Soc., Providence, RI, 1990, pp.Β 187β194. MR 1077437, DOI 10.1090/pspum/051.2/1077437
- Bojan Magajna, A system of operator equations, Canad. Math. Bull. 30 (1987), no.Β 2, 200β209. MR 889539, DOI 10.4153/CMB-1987-029-2
- Martin Mathieu, Elementary operators on prime $C^*$-algebras. I, Math. Ann. 284 (1989), no.Β 2, 223β244. MR 1000108, DOI 10.1007/BF01442873 β, Applications of ultraprime Banach algebras in the theory of elementary operators, Thesis, TΓΌbingen, 1986.
- Martin Mathieu, Rings of quotients of ultraprime Banach algebras, with applications to elementary operators, Conference on Automatic Continuity and Banach Algebras (Canberra, 1989) Proc. Centre Math. Anal. Austral. Nat. Univ., vol. 21, Austral. Nat. Univ., Canberra, 1989, pp.Β 297β317. MR 1022011
- Gerard J. Murphy, $C^*$-algebras and operator theory, Academic Press, Inc., Boston, MA, 1990. MR 1074574
- Richard S. Pierce, Associative algebras, Studies in the History of Modern Science, vol. 9, Springer-Verlag, New York-Berlin, 1982. MR 674652
- Masamichi Takesaki, Theory of operator algebras. I, Springer-Verlag, New York-Heidelberg, 1979. MR 548728
Bibliographic Information
- © Copyright 1993 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 118 (1993), 119-127
- MSC: Primary 46L05; Secondary 47B48, 47D25
- DOI: https://doi.org/10.1090/S0002-9939-1993-1158004-6
- MathSciNet review: 1158004