A vectorial Slepian type inequality. Applications
HTML articles powered by AMS MathViewer
- by B. Khaoulani
- Proc. Amer. Math. Soc. 118 (1993), 95-102
- DOI: https://doi.org/10.1090/S0002-9939-1993-1159173-4
- PDF | Request permission
Abstract:
We prove a new inequality for Gaussian processes; this inequality implies the Chevet’s inequality and Gordon’s inequalities. Some remarks on Gaussian proofs of Dvoretzky’s theorem are given.References
- Louis H. Y. Chen, An inequality for the multivariate normal distribution, J. Multivariate Anal. 12 (1982), no. 2, 306–315. MR 661566, DOI 10.1016/0047-259X(82)90022-7 S. Chevet, Séries de variables aléatoires Gaussiennes à valeurs dans $E{\widehat \otimes _\varepsilon }F$. Application aux produits d’espaces de Wiener, Séminaire Maurey-Schwartz, exposé XiX 77/78. X. M. Fernique, Régularité des trajectoires des fonctions aléatoires Gaussiennes, Lecture Notes in Math., vol. 480, Springer-Verlag, New York, 1974.
- Yehoram Gordon, Some inequalities for Gaussian processes and applications, Israel J. Math. 50 (1985), no. 4, 265–289. MR 800188, DOI 10.1007/BF02759761
- Yehoram Gordon, Elliptically contoured distributions, Probab. Theory Related Fields 76 (1987), no. 4, 429–438. MR 917672, DOI 10.1007/BF00960067
- Jean-Pierre Kahane, Une inégalité du type de Slepian et Gordon sur les processus gaussiens, Israel J. Math. 55 (1986), no. 1, 109–110 (French, with English summary). MR 858463, DOI 10.1007/BF02772698
- V. D. Milman, A new proof of A. Dvoretzky’s theorem on cross-sections of convex bodies, Funkcional. Anal. i Priložen. 5 (1971), no. 4, 28–37 (Russian). MR 0293374
- Gilles Pisier, Probabilistic methods in the geometry of Banach spaces, Probability and analysis (Varenna, 1985) Lecture Notes in Math., vol. 1206, Springer, Berlin, 1986, pp. 167–241. MR 864714, DOI 10.1007/BFb0076302
- Gideon Schechtman, A remark concerning the dependence on $\epsilon$ in Dvoretzky’s theorem, Geometric aspects of functional analysis (1987–88), Lecture Notes in Math., vol. 1376, Springer, Berlin, 1989, pp. 274–277. MR 1008729, DOI 10.1007/BFb0090061
Bibliographic Information
- © Copyright 1993 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 118 (1993), 95-102
- MSC: Primary 60G15; Secondary 46B07, 47N30
- DOI: https://doi.org/10.1090/S0002-9939-1993-1159173-4
- MathSciNet review: 1159173