On the homology of Postnikov fibres
HTML articles powered by AMS MathViewer
- by Y. Félix and J. C. Thomas
- Proc. Amer. Math. Soc. 118 (1993), 255-258
- DOI: https://doi.org/10.1090/S0002-9939-1993-1165053-0
- PDF | Request permission
Abstract:
Let $k$ be a field of positive characteristic and $X$ be a simply connected space of the homotopy type of a finite type CW complex. The Postnikov fibre ${X_{[n]}}$ of $X$ is defined as the homotopy fibre of the $n$-equivalence ${f_n}:X \to {X_n}$ coming from the Postnikov tower $\{ {X_n}\}$ of $X$. We prove that if the Lusternik-Schnirelmann category of $X$ is finite, then ${H_{\ast }}({X_{[n]}};k)$ contains a free module on a subalgebra $K$ of ${H_{\ast }}(\Omega {X_n};k)$ such that ${H_{\ast }}(\Omega {X_n};k)$ is a finite-dimensional free $K$-module.References
- I. Berstein and T. Ganea, The category of a map and of a cohomology class, Fund. Math. 50 (1961/62), 265–279. MR 139168, DOI 10.4064/fm-50-3-265-279
- Yves Félix, Stephen Halperin, and Jean-Claude Thomas, Hopf algebras of polynomial growth, J. Algebra 125 (1989), no. 2, 408–417. MR 1018954, DOI 10.1016/0021-8693(89)90173-7
- Y. Félix, S. Halperin, and J.-C. Thomas, The category of a map and the grade of a module, Israel J. Math. 78 (1992), no. 2-3, 177–196. MR 1194965, DOI 10.1007/BF02808056
- Yves Félix, Stephen Halperin, and Jean-Claude Thomas, Lie algebras of polynomial growth, J. London Math. Soc. (2) 43 (1991), no. 3, 556–566. MR 1113393, DOI 10.1112/jlms/s2-43.3.556
- Yves Félix, Stephen Halperin, and Jean-Claude Thomas, Elliptic Hopf algebras, J. London Math. Soc. (2) 43 (1991), no. 3, 545–555. MR 1113392, DOI 10.1112/jlms/s2-43.3.545
- John W. Milnor and John C. Moore, On the structure of Hopf algebras, Ann. of Math. (2) 81 (1965), 211–264. MR 174052, DOI 10.2307/1970615
- John C. Moore and Larry Smith, Hopf algebras and multiplicative fibrations. I, Amer. J. Math. 90 (1968), 752–780. MR 234455, DOI 10.2307/2373482
- George W. Whitehead, Elements of homotopy theory, Graduate Texts in Mathematics, vol. 61, Springer-Verlag, New York-Berlin, 1978. MR 516508, DOI 10.1007/978-1-4612-6318-0
Bibliographic Information
- © Copyright 1993 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 118 (1993), 255-258
- MSC: Primary 55S45; Secondary 55S35, 57T05
- DOI: https://doi.org/10.1090/S0002-9939-1993-1165053-0
- MathSciNet review: 1165053