Analytic mappings on hyperfinite sets
HTML articles powered by AMS MathViewer
- by C. Ward Henson and David Ross
- Proc. Amer. Math. Soc. 118 (1993), 587-596
- DOI: https://doi.org/10.1090/S0002-9939-1993-1126195-9
- PDF | Request permission
Abstract:
Let $S$ and $T$ be hyperfinite sets in an ${\aleph _1}$-saturated nonstandard universe. The following are equivalent: (i) $\frac {{|S|}} {{|T|}} \approx 1$. (ii) There is a bijection from $\frac {{|S|}} {{|T|}} \approx 1.$ onto $T$ whose graph is Borel (over the internal subsets of $S \times T$). This follows from somewhat more general results about analytic partial functions on hyperfinite sets, the proofs of which use Choquet’s theorem on the capacitibility of analytic sets. This paper includes: proofs of the above results; an elementary direct construction for extensions of internal set functions to capacities; and a surprising corollary asserting the nonexistence of ergodic Borel transformations of a Loeb probability space.References
- Sergio Albeverio, Raphael Høegh-Krohn, Jens Erik Fenstad, and Tom Lindstrøm, Nonstandard methods in stochastic analysis and mathematical physics, Pure and Applied Mathematics, vol. 122, Academic Press, Inc., Orlando, FL, 1986. MR 859372
- L. E. Bertossi, Standard capacities with nonstandard pavings, Notas Soc. Mat. Chile 5 (1986), no. 2, 1–6. MR 881729
- Karel Čuda and Petr Vopěnka, Real and imaginary classes in the alternative set theory, Comment. Math. Univ. Carolin. 20 (1979), no. 4, 639–653. MR 555180
- Claude Dellacherie and Paul-André Meyer, Probabilities and potential, North-Holland Mathematics Studies, vol. 29, North-Holland Publishing Co., Amsterdam-New York, 1978. MR 521810
- C. Ward Henson, The isomorphism property in nonstandard analysis and its use in the theory of Banach spaces, J. Symbolic Logic 39 (1974), 717–731. MR 360263, DOI 10.2307/2272856
- C. Ward Henson, Analytic sets, Baire sets and the standard part map, Canadian J. Math. 31 (1979), no. 3, 663–672. MR 536371, DOI 10.4153/CJM-1979-066-0
- C. Ward Henson, Unbounded Loeb measures, Proc. Amer. Math. Soc. 74 (1979), no. 1, 143–150. MR 521888, DOI 10.1090/S0002-9939-1979-0521888-9
- Albert E. Hurd and Peter A. Loeb, An introduction to nonstandard real analysis, Pure and Applied Mathematics, vol. 118, Academic Press, Inc., Orlando, FL, 1985. MR 806135
- H. Jerome Keisler, Kenneth Kunen, Arnold Miller, and Steven Leth, Descriptive set theory over hyperfinite sets, J. Symbolic Logic 54 (1989), no. 4, 1167–1180. MR 1026596, DOI 10.2307/2274812
- Tom Lindstrøm, An invitation to nonstandard analysis, Nonstandard analysis and its applications (Hull, 1986) London Math. Soc. Stud. Texts, vol. 10, Cambridge Univ. Press, Cambridge, 1988, pp. 1–105. MR 971064
- Peter A. Loeb, Conversion from nonstandard to standard measure spaces and applications in probability theory, Trans. Amer. Math. Soc. 211 (1975), 113–122. MR 390154, DOI 10.1090/S0002-9947-1975-0390154-8
- Paul-A. Meyer, Probability and potentials, Blaisdell Publishing Co. [Ginn and Co.], Waltham, Mass.-Toronto, Ont.-London, 1966. MR 0205288 D. A. Ross, Measurable transformations in saturated models of analysis, Ph.D. thesis, Univ. of Wisconsin at Madison, 1983.
- David Ross, Lifting theorems in nonstandard measure theory, Proc. Amer. Math. Soc. 109 (1990), no. 3, 809–822. MR 1019753, DOI 10.1090/S0002-9939-1990-1019753-0
- Petr Vopěnka, Mathematics in the alternative set theory, BSB B. G. Teubner Verlagsgesellschaft, Leipzig, 1979. Teubner-Texte zur Mathematik. [Teubner Texts in Mathematics]; With German, French and Russian summaries. MR 581368 B. Zivaljevic, Hyperfinite transversal theory, Ph.D. thesis, Univ. of Illinois at Urbana-Champaign, 1989.
- Boško Živaljević, Some results about Borel sets in descriptive set theory of hyperfinite sets, J. Symbolic Logic 55 (1990), no. 2, 604–614. MR 1056374, DOI 10.2307/2274650
- Boško Živaljević, The structure of graphs all of whose $Y$-sections are internal sets, J. Symbolic Logic 56 (1991), no. 1, 50–66. MR 1131729, DOI 10.2307/2274903
- Boško Živaljević, $U$-meager sets when the cofinality and the coinitiality of $U$ are uncountable, J. Symbolic Logic 56 (1991), no. 3, 906–914. MR 1129155, DOI 10.2307/2275060
- Boško Živaljević, Every Borel function is monotone Borel, Ann. Pure Appl. Logic 54 (1991), no. 1, 87–99. MR 1130220, DOI 10.1016/0168-0072(91)90010-J
- Boško Živaljević, Uniqueness of unbounded Loeb measure using Choquet’s theorem, Proc. Amer. Math. Soc. 116 (1992), no. 2, 529–533. MR 1094509, DOI 10.1090/S0002-9939-1992-1094509-3
Bibliographic Information
- © Copyright 1993 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 118 (1993), 587-596
- MSC: Primary 03H05; Secondary 03E15, 04A15, 28A12, 28E05
- DOI: https://doi.org/10.1090/S0002-9939-1993-1126195-9
- MathSciNet review: 1126195