Note on the integrability of superharmonic functions
HTML articles powered by AMS MathViewer
- by Noriaki Suzuki
- Proc. Amer. Math. Soc. 118 (1993), 415-417
- DOI: https://doi.org/10.1090/S0002-9939-1993-1126201-1
- PDF | Request permission
Abstract:
Let $D$ be a domain in ${{\mathbf {R}}^n}$ and let ${S^ + }(D)$ be the set of all nonnegative superharmonic functions on $D$. It is shown that if ${S^ + }(D) \subset {L^p}(D)$ with some $p > 0$, then for each ${x_0} \in D$ there is a constant $C = C(D,p,{x_0}) > 0$ such that the inequality \[ \int _D {u{{(x)}^p}dx \leqslant Cu{{({x_0})}^p}} \] holds for all $u \in {S^ + }(D)$.References
- On the global integrability of superharmonic functions in balls, J. London Math. Soc. (2) 4 (1971), 365–373. MR 291484, DOI 10.1112/jlms/s2-4.2.365
- D. H. Armitage, Further results on the global integrability of superharmonic functions, J. London Math. Soc. (2) 6 (1972), 109–121. MR 313524, DOI 10.1112/jlms/s2-6.1.109 I. M. Gelfand, Sur un lemma de la théorie des espaces linéaires, Izv. Nauchno-Issled. Inst. Mat. Khar’kov Univ. Ser. 4 13 (1936), 35-40.
- L. L. Helms, Introduction to potential theory, Pure and Applied Mathematics, Vol. XXII, Wiley-Interscience [A division of John Wiley & Sons, Inc.], New York-London-Sydney, 1969. MR 0261018
- Fumi-Yuki Maeda and Noriaki Suzuki, The integrability of superharmonic functions on Lipschitz domains, Bull. London Math. Soc. 21 (1989), no. 3, 270–278. MR 986371, DOI 10.1112/blms/21.3.270
- Makoto Masumoto, Integrability of superharmonic functions on plane domains, J. London Math. Soc. (2) 45 (1992), no. 1, 62–78. MR 1157552, DOI 10.1112/jlms/s2-45.1.62
- Wayne Smith and David A. Stegenga, Sobolev imbeddings and integrability of harmonic functions on Hölder domains, Potential theory (Nagoya, 1990) de Gruyter, Berlin, 1992, pp. 303–313. MR 1167248
Bibliographic Information
- © Copyright 1993 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 118 (1993), 415-417
- MSC: Primary 31B05
- DOI: https://doi.org/10.1090/S0002-9939-1993-1126201-1
- MathSciNet review: 1126201