Test elements in excellent rings with an application to the uniform Artin-Rees property
HTML articles powered by AMS MathViewer
- by Ian M. Aberbach
- Proc. Amer. Math. Soc. 118 (1993), 355-363
- DOI: https://doi.org/10.1090/S0002-9939-1993-1129869-9
- PDF | Request permission
Abstract:
Working in positive prime characteristic throughout, we show that excellent rings of dimension $2$ or smaller have completely stable test elements and use this to show that excellent domains of dimension $3$ have the uniform Artin-Rees property.References
- David A. Buchsbaum and David Eisenbud, What makes a complex exact?, J. Algebra 25 (1973), 259–268. MR 314819, DOI 10.1016/0021-8693(73)90044-6
- A. J. Duncan and L. O’Carroll, A full uniform Artin-Rees theorem, J. Reine Angew. Math. 394 (1989), 203–207. MR 977443, DOI 10.1515/crll.1989.394.203
- J. A. Eagon and D. G. Northcott, Ideals defined by matrices and a certain complex associated with them, Proc. Roy. Soc. London Ser. A 269 (1962), 188–204. MR 142592, DOI 10.1098/rspa.1962.0170 A. Grothendieck, Éléments de géométrie algébrique ${\operatorname {IV} _2}$, Inst. Hautes Études Sci. Publ. Math. 20 (1964).
- Melvin Hochster, Cyclic purity versus purity in excellent Noetherian rings, Trans. Amer. Math. Soc. 231 (1977), no. 2, 463–488. MR 463152, DOI 10.1090/S0002-9947-1977-0463152-5
- Melvin Hochster and Craig Huneke, Tight closure, invariant theory, and the Briançon-Skoda theorem, J. Amer. Math. Soc. 3 (1990), no. 1, 31–116. MR 1017784, DOI 10.1090/S0894-0347-1990-1017784-6 —, $F$-regularity, test elements and smooth base change rings, preprint. —, Tight closure and strong $F$-regularity, Numéro consacré ou colloque en l’honneur de P. Samuel, Mém. Soc. Math. de France (N.S), no. 38 (1989), 119-133. —, Phantom homology, preprint.
- Craig Huneke, Uniform bounds in Noetherian rings, Invent. Math. 107 (1992), no. 1, 203–223. MR 1135470, DOI 10.1007/BF01231887
- Hideyuki Matsumura, Commutative algebra, 2nd ed., Mathematics Lecture Note Series, vol. 56, Benjamin/Cummings Publishing Co., Inc., Reading, Mass., 1980. MR 575344
Bibliographic Information
- © Copyright 1993 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 118 (1993), 355-363
- MSC: Primary 13A35; Secondary 13D25, 13F40
- DOI: https://doi.org/10.1090/S0002-9939-1993-1129869-9
- MathSciNet review: 1129869