A matrix solution to the inverse Perron-Frobenius problem
HTML articles powered by AMS MathViewer
- by P. Góra and A. Boyarsky
- Proc. Amer. Math. Soc. 118 (1993), 409-414
- DOI: https://doi.org/10.1090/S0002-9939-1993-1129877-8
- PDF | Request permission
Abstract:
Let $f$ be a probability density function on the unit interval $I$. The inverse Perron-Frobenius problem involves determining a transformation $\tau :I \to I$ such that the one-dimensional dynamical system ${x_{i + 1}} = \tau ({x_i})$ has $f$ as its unique invariant density function. A matrix method is developed that provides a simple relationship between $\tau$ and $f$, where $f$ is any piecewise constant density function. The result is useful for modelling and predicting chaotic data.References
- Nathan Friedman and Abraham Boyarsky, Construction of ergodic transformations, Adv. in Math. 45 (1982), no. 3, 213–254. MR 673802, DOI 10.1016/S0001-8708(82)80004-2
- S. V. Ershov and G. G. Malinetskiĭ, Solution of an inverse problem for the Perron-Frobenius equation, Zh. Vychisl. Mat. i Mat. Fiz. 28 (1988), no. 10, 1491–1497, 1598 (Russian); English transl., U.S.S.R. Comput. Math. and Math. Phys. 28 (1988), no. 5, 136–141 (1990). MR 973203, DOI 10.1016/0041-5553(88)90022-5
- Abraham Boyarsky and Gabriel Haddad, All invariant densities of piecewise linear Markov maps are piecewise constant, Adv. in Appl. Math. 2 (1981), no. 3, 284–289. MR 626863, DOI 10.1016/0196-8858(81)90008-7
- Martin Casdagli, Nonlinear prediction of chaotic time series, Phys. D 35 (1989), no. 3, 335–356. MR 1004201, DOI 10.1016/0167-2789(89)90074-2
- S. Pelikan, Invariant densities for random maps of the interval, Trans. Amer. Math. Soc. 281 (1984), no. 2, 813–825. MR 722776, DOI 10.1090/S0002-9947-1984-0722776-1
Bibliographic Information
- © Copyright 1993 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 118 (1993), 409-414
- MSC: Primary 58F11; Secondary 28D05
- DOI: https://doi.org/10.1090/S0002-9939-1993-1129877-8
- MathSciNet review: 1129877