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AN ELEMENTARY SIMULTANEOUS APPROXIMATION THEOREM

THEODORE KILGORE

(Communicated by J. Marshall Ash)

Abstract. We will give an elementary and direct proof that for f e Cq[-1, 1]

there exists a sequence of polynomials P„ of degree at most n (n > 2q) such

that for k-0,... ,g

\f(k)(x)-pW{x)\<MgtkhtL^Y    £„_,(/(«)),

with Mqk depending only upon q and k. Moreover f^(±\) = P„  (±1).

1. Introduction

We will prove here the following

Theorem. Let fie Cq[-1, 1]. Then there exists a sequence of polynomials Pn
of degree at most n  (n > 2q) such that for k = 0, ... , q

\fi^(x) - /f >(jc)| < Mqyk (y/l-x2/n)q~k £„_„(/<*>),

where the constants Mqyk depend only on q and k. Moreover, /^(±1) =

#H±1).
Notation. Most of our notation is quite standard and will be introduced in

context. As the first instance, we write C9[-l, 1] for the space of q times
continuously differentiable functions, and

£„(/):=      inf     ||/-p„||,
degree pn<n

in which the norm is the usual supremum norm.

Context and antecedents. Those results that give pointwise estimates for polyno-

mial approximation and/or establish sharp rates for simultaneous approxima-

tion of derivatives are often referred to as "of Timan type." The main feature

of our theorem is a new and simply motivated proof directly employing basic

results on approximation by trigonometric polynomials; its precise statement is
also new. For comparison we state some of the better known previous results,
introducing for brevity the notation

...       1      vT^c^
_ A"(x) := T2 + -^t— ■

Received by the editors May 9, 1991 and, in revised form, October 10, 1991.

1991 Mathematics Subject Classification. Primary 41A28.

©1993 American Mathematical Society

0002-9939/93 $1.00+ $.25 per page

529



530 THEODORE KILGORE

Timan [11] showed the following:

Let fie Cq[-1, 1]. Then there is a sequence of polynomials

Pn of degree at most n such that

\fi(x) - Pn(x)\ < M(An(x))qco(f^ ; A„(x)).

The notation co(fi; h) (modulus of continuity) is defined by

co(f;h):=   sup   \fi(x)-f(y)\.
\x-y\<h

Telyakovskii [10] improved Timan's result by replacing A„(x) with \/l - x2/n .

Trigub [12] established the simultaneous approximation result that for k =

0,...,q

|/W(jc) - P(nk)(x)\ < M(A„(x))q-kco(fM ; A„(jc)) .

Gopengauz [6] replaced A„(jc) (in both locations) in Trigub's result with

Vl - x2/n, and Leviatan [8] replaced the modulus of continuity in Trigub's

result with E„-q(f^). Our result combines features of the theorems of Gopen-

gauz and Leviatan, and that of Leviatan follows in particular as a corollary from

our theorem. Thus, the "interpolatory" result of Balazs, Kilgore, and Vertesi [2],

useful in formulating estimates for simultaneous approximation via interpola-

tion, also follows from the present theorem. More recently, the author stated

and proved a version of this same theorem for the case q = 1 in Kilgore [7],

which also surveys some recent applications to interpolation.

2. Method of proof

Our theorem will follow from two basic results on trigonometric best approx-

imation of 27t-periodic functions (Lemma 1 and Lemma 2) and from several
observations on derivatives (Lemmas 3, 4, 5). To avoid a convoluted presenta-

tion, we will not actually estimate the constants Mqk , but it should be clear

that reasonable estimates can be obtained, especially for small q . The estimates

can be improved if the conclusion f (q\+l) = P„x\+1) is dropped.

Before embarking on the sequence Lemmas 1-5, we introduce the notation

E*n(fi):=   H if      ||/-r„||,
order of T„<n

in which fi is a 27r-periodic function and T„ is a trigonometric polynomial

(linear combination of 1, cos 6, ... , cos nd, sin 0, ... , sin nd). The order of

T„ signifies the highest multiple of 6 appearing in the actual expansion of Tn .

Lemma 1. Let fi be a k times differentiable periodic function. Then there exists

for £ = 0,1,2,... a constant ak < (n/2)2 independent of fi and n such that

E*n(f)<ak(n + l)-kE*(fW).

Proof. This is a well-known result and is sufficient for our purposes. For a quite

simple and basic proof one may consult Cheney [3]. In fact, ak < n/2 for all

k is known. The best possible values are estimated in Favard [5] or Achieser

and Krein [1].

Our next lemma appeared in Czipszer and Freud [4], using as a proof the

listed properties of the de la Vallee-Poussin means of the Fourier expansion,
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which are simply and succinctly demonstrated among other places in the text of

Lorentz [9]. We prove the lemma for completeness and to highlight the inde-

pendence of our theorem from the other results mentioned in the introduction.

Lemma 2. Let fi be a 2n-periodic function that is k times continuously differ-

entiable. Let Tn(8) be a trigonometric polynomial of order at most n satisfying

for some constant C the inequality

\\fi(d)-Tn(d)\\<CE*n(fi).

Then there exists a constant fik independent of fi and n such that

\\fi^(d)-Tik)(d)\\<fikCE;(f^).

Proof. Let Sjf denote the Fourier expansion of /, truncated after order j.

The de la Vallee-Poussin means are the linear operators Vnf defined for n =

1,2,... by
.  2/t-l

Vnf:=-Y,s>f-
j=n

One has V„(f) = (V„f)', \\Vn\\ < 3 for n = 1, 2,... , and Vn(Tn) = Tn for
order Tn < n . Immediately

\\f'-Tn\\<\\f'-Vn(fi')\\ + \\(Vnfi)'-Tn\\

<(l + \\Vn\\)E;(f') + 2n\\Vn(f)-Tn\\

<4E;(fi') + 2n\\Vn\\\\fi-Tn\\

< AEn(f) + oCnEn(fi) < 4E*n(f) + 3CnEn(f),

using the listed properties of Vn , the Bernstein inequality, and Lemma 1. The

lemma is thus demonstrated for k = 1 and can obviously be established by
repetition for other values of k .

Another estimate for the constants fik is found in the cited article of Czip-

szer and Freud, of the pk < A log[min(« ,k) + 1], where the constant A is

independent of n, fi, and k .

Lemma 3. Let h(6) be a 2n-periodic function that is q times continuously

differentiable. Then for each n > q there exists a trigonometric polynomial

T„(6) of order at most n and constants yo, ... , yq independent of h and n

such that for k = 0, ... , q

(a) \\h^(6) - 7f >(0)|| < iyk/nq-k)En>ih^),
(b) h^k\0) - Tf '(0) = hSk\n) - T(k\n) = 0,

and Tn is even if h is even, odd if h is odd.

Proof. For q > 0 let the integer m he chosen as the greatest integer in

(n - I)/q. Let Bn(6) be a best approximation for h. Then (a) holds by

Lemma 2 combined with Lemma 1.

We now define polynomials T„o(9), ... , Tn<q(6) by the following proce-

dure:

7„,o(0) := Bn(6) + (h(0) - B„(0)) (l+C2°Sd) + Wn) - B„(tc)) (^^) ,
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and we note that T„yo(6) satisfies conclusion (a) with appropriate constants

yk' for k — 0, ... , q. Moreover, T„yo satisfies (b) for the value k = 0. We

now define Tn k for k = 1,..., q in recursive fashion by

T..M := T,it.,(e) + ( (*O(0) - Tf\_,(0) (i±|5i»)

+(-l)-(^.W-7'«_,W)(i^))^.

We note first of all that T„ k satisfies (b) for derivatives from 0 up to k, and

thus Tnyq satisfies (b) of the lemma for derivatives 0 to q. We will define
T„id) := T„q(6). Lemma 2 suffices for the estimates required in (a), providing

for each k = 1,..., q a set of constants y0k\ ... , yqk) such that

\\h(j){e) - Tll\(d)\\ < (yJ*V-')3;(A(,)),       J = 0,..., q.
To establish that T„(8) may be chosen even if h(6) is even and odd if h(8)

is odd, it suffices to note that Bn(0) may be chosen even if h is even or odd if

h is odd, and the construction of the polynomials Tnk preserves evenness or

oddness. Moreover, if h is odd, then T„yo — B„ ; T„y2 = T„yi; Tn>4 = TH>$,
and so on, and if h is even, then T„y { = T„yo ; Tn>3 = T„t2; Tn5 = T„y4, and
so on up to T„yq .

Lemma 4. Let {H„(6)} be a sequence of q times continuously differentiable

2n-periodic functions satisfying

Hn(d)/sinQ 0-+O   as9-^Oor0^n

and satisfying for some sequence of nonnegative numbers {e„} the inequalities

\\Hnk)(.9)\\ < C/nq~ke„ for k = 0, ... , q. Then for k = 0,..., q the functions
FIn,k{Q) satisfy \\H„yk(6)\\ < CK/nq~ke„ with K dependent only on q (and
k), where Hn o := H„, and for k = 0, ... , q - 1

Hnyk+i(6) := H'nk(d) + (q- k)(cosdHnyk(6))/sin6.

Proof. We will use induction and suppose that the lemma is true for all integers

q less than the given one, noting that the conclusion is vacuously true if q = 0.

We have

Hnyi(6) = HUe)^ciCOSe^f)=Hm + qcoseI^l,

in which the magnitude of the second term may be estimated by Rolle's The-

orem. We obtain, since |(0cos0)/sin0| < 1 for |0| < n/2, with a similar

estimate if \6 - n\ < n/2,

\\H„,m\\ < (1 + 9)11^(6)11 < C(q + l)en/nq-x.

Moreover,

H^=Hm      H^
sin^'e     sinq~l 6     sin" 6

and therefore H„yi(d)/sinq~l 6 -► 0 as 6 -» 0, n. And clearly HnyX(9) is
q - 1 times continuously differentiable.
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The conclusion of the lemma will hold for H„ x provided that we show the

existence of a Kx such that for k = 0, ... , q - 1

||//f)(0)||<£l^.
' fl9—k—\

To this end we note that

<>,(«)=<;»(*)+,(s^my\
and that only the magnitude of the second term requires further investigation.
We have for arbitrary 6

(^^)>tG)Kco-»-,-|(^)0)

In turn,

J 1=0   x '

for some constant C .

Now we get

7=0   v^ '

and the lemma holds with the function HnX  in place of the function H„.

Hence, there is a constant K2 such that for k = 2, ... , q (shifting indices)

Wn,k\\<^^,

and we have already seen that

C(q+l)
ll«»,ill<    /|,_1    e„.

Therefore the lemma holds for Hn with constant K = max{<? + I, K2}.

Lemma 5. Let G e Cq[-1, 1] be such that G^(±l) = 0 for k = 0, ... ,q,
and H(6) := (G(cos8))/sin''(d). Then for Kq depending only upon q

E^q(DlH)<KqEn_q(DqxG).
Proof. The lemma is obvious if q = 0. We assume that the lemma holds true

for all values of q less than the given one. We note that
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With jc = cos 6, the expression in parentheses is a function of x that lies in

Cq~x[-l, 1] and satisfies

faw + Trjr)   =o.     * = ±i> * = o,...,ff-i.

Therefore, in accordance with our assumption that the lemma operates for q-1,

we have

K-q{D6H) = E*n_qiDq-xiDeH)) < Kq_xEn_q [oqx~x (g'(x) + ^^))

<Kq_x (En-qiDqxGix)) + QEn-q (dx~x (£t^))) •

Our proof is now completed by showing that

En.q (Dq-X (j^)) < (2" - l)E„-g(D«G(x)),

from which it would clearly follow that Kq < i2q)Kq-X.  We have for jc e

[-1,1] that

lU(q-l\,.&q-x-k\x)

2ihSk >  a-*)k+l

+ 2 2J   l>     {   k   )K- {l+x)k+x  ■

Therefore,

We may examine for arbitrary A: the expression

/g(g-'-*)(s)\

and estimate its magnitude. Let P*_qix) he any polynomial of degree n - q

or less approximating the function G(q~x~k)ix)/il - x)k+x . Using repeatedly
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Cauchy's mean value theorem, we obtain

G(q-X~k\x) G«-k-l>(x)-(l-x)k+lP;_g(x)

(1-X)k+X r"~q{X) (1-X)k+X

= ^(^(yl-Iti-^'^Wf11)

for some point y between x and 1. Furthermore, if Qn-q(x) is a polynomial

of best approximation of degree at most n-q for G^q\x), then we are free to

choose P*_q(x) of degree n - q or less such that

[(l-x)k+xP*n_q(x)f+V = Qn-q(x).

Using this particular choice for P*    , we obtain

(G(q~k~x)(x)\       G(q~k~X)(x)       „ 1

£"-"i(l-JC)^'   J"      (1-*)*+»    _i>"-"(X)    -(Frl)!^"-^^-

Similarly
/Gt'-*-')(x)\ <       1 („

*"-«V(l-*)*+1 /(*+!)!   "{
It follows, inserting these inequalities into the previous estimate, that

This final inequality completes the proof of the lemma.

Proof of the theorem. Let fie Cq[-i, 1]. We first note that from / we can

subtract a fixed polynomial Q(x) of degree at most 2q + 1 that interpolates

/(°>, ... , f{q) at ±1, obtaining f(x) - Q(x) = g(x), in which the function

g(x) satisfies g^(±l) = 0 for k = 0, ... , q. It is clear that for n > 2q

we have En_k(f^) = En_k(g(k)) for k = 0, ... , q. For, if P^ of degree

< n - k is a polynomial of best approximation for / <-k), then

En-k(fW) = ||/« - tf >|| = \\gik) + Q(k) - tf >|| > En_k(g^).

And similarly, if a polynomial tf' of degree < n - k is a polynomial of best

approximation for g^ then we have En_k(g(k'>) = \\g(k) - P^ '|| = ||/(A:) -

Q(k) _ p(k)\\ > En_k(fW). Therefore, our theorem need only be proven for

the function g . Now, we define the function h(6) by h(6) := ^(cos0)/sin? 0 .

It follows immediately that h(6) is a 27t-periodic function that is q times

continuously differentiable, and furthermore, h(6), ... , h^q\9) are all zero at

9-0 and 9 = n. Moreover, h(9) is even if q is even and odd if q is odd.

According to Lemma 3, we choose a polynomial of approximation T„-q(9) of

order n-q for h(9) and its derivatives. It is possible as a consequence to

write T„-q(9) = sin* 9Qn-2q(cos9), in which Qn-2q is a polynomial of degree

at most n-2q and Qn-2(cos 9) is also zero at 0 and n . We then have

g(cos0) - sin2<? 9Qn-2q(cos9) = sin* 0(A(0) - sin* 0£>n_2(,(cos0))

= sin" 9(h(9) - T„-q(9)).
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From this identity it follows immediately that

\g(x) - (1 - x2)qQn-2q(x)\ < yoWl-x2/n)qE*n_q(h).

Furthermore, defining H„(9) = h(9) - Tn_q(9), it is seen by Lemma 3 that

\\H(nk)(9)\\<(yk/nq-k)E*n_q(h^).

Therefore, by Lemma 4, using e„ - E*_q(h^) and C = max{yn, ..., fy}, it

follows that

\\H„yk(9)\\<(CK/nq-k)E;_q(h^),

and moreover we have for k = 0, ... , q - 1

^(sin-fc 9Hnyk(8)Y = sin-^1 0 (h'^8) + (q - ^^^j

= sin"-k-i9Hnyk+x(9).

Consequently, we have for k = 0, ... , q

\(g(x) - (1 - x2)qQn_2q(x))M\ < CK(s/l-x2/n)q-kE*n_q(hM)

and also (g(x) - (1 - x2)q Qn^2q(x))(q) = 0 at ±1. Lemma 5 now shows that

E*n_q(h^(9)) <C-K- K9En-q(gM(x)).

This completes the proof of the theorem with Pn(x) = (1 - x2)qQn-2q(x).
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