A martingale inequality related to exponential square integrability
HTML articles powered by AMS MathViewer
- by Jill Pipher
- Proc. Amer. Math. Soc. 118 (1993), 541-546
- DOI: https://doi.org/10.1090/S0002-9939-1993-1131038-3
- PDF | Request permission
Abstract:
We present an inequality for dyadic martingales (together with its continuous analog for functions on ${\mathbb {R}^n}$) which is shown to be equivalent to a result of Chang-Wilson-Wolff on exponential square integrability. The analog of this weighted inequality for double dyadic martingales is also proven. Finally, we discuss a possible connection between these inequalities and a theorem of Garnett.References
- S.-Y. A. Chang, J. M. Wilson, and T. H. Wolff, Some weighted norm inequalities concerning the Schrödinger operators, Comment. Math. Helv. 60 (1985), no. 2, 217–246. MR 800004, DOI 10.1007/BF02567411
- R. R. Coifman and C. Fefferman, Weighted norm inequalities for maximal functions and singular integrals, Studia Math. 51 (1974), 241–250. MR 358205, DOI 10.4064/sm-51-3-241-250
- Björn E. J. Dahlberg, Approximation of harmonic functions, Ann. Inst. Fourier (Grenoble) 30 (1980), no. 2, vi, 97–107 (English, with French summary). MR 584274
- C. Fefferman and E. M. Stein, $H^{p}$ spaces of several variables, Acta Math. 129 (1972), no. 3-4, 137–193. MR 447953, DOI 10.1007/BF02392215
- John B. Garnett, Two constructions in BMO, Harmonic analysis in Euclidean spaces (Proc. Sympos. Pure Math., Williams Coll., Williamstown, Mass., 1978) Proc. Sympos. Pure Math., XXXV, Part, Amer. Math. Soc., Providence, R.I., 1979, pp. 295–301. MR 545269
- Jill Pipher, Bounded double square functions, Ann. Inst. Fourier (Grenoble) 36 (1986), no. 2, 69–82 (English, with French summary). MR 850744
- J. Michael Wilson, Weighted inequalities for the dyadic square function without dyadic $A_\infty$, Duke Math. J. 55 (1987), no. 1, 19–50. MR 883661, DOI 10.1215/S0012-7094-87-05502-5
- J. Michael Wilson, A sharp inequality for the square function, Duke Math. J. 55 (1987), no. 4, 879–887. MR 916125, DOI 10.1215/S0012-7094-87-05542-6
- Abraham Wald, Sequential Analysis, John Wiley & Sons, Inc., New York; Chapman & Hall, Ltd., London, 1947. MR 0020764
Bibliographic Information
- © Copyright 1993 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 118 (1993), 541-546
- MSC: Primary 42B25
- DOI: https://doi.org/10.1090/S0002-9939-1993-1131038-3
- MathSciNet review: 1131038