An invariant of links in a handlebody associated with the spin $j$ representation of $U_ q(\mathfrak {sl}(2, \mathbf {C}))$
HTML articles powered by AMS MathViewer
- by Shigekazu Nakabo
- Proc. Amer. Math. Soc. 118 (1993), 645-655
- DOI: https://doi.org/10.1090/S0002-9939-1993-1132416-9
- PDF | Request permission
Abstract:
We construct an invariant of framed links in a handlebody by means of the spin $j$ representation of ${U_q}(\mathfrak {s}\mathfrak {l}(2,\mathbb {C}))$. We can see this invariant is an extension of the Jones polynomial and Kauffman’s Dubrovnik polynomial. Moreover, we can obtain a linear representation of the generalized braid group associated with the Lie algebras of types $B$ and $C$ by applying the operators used in constructing an invariant to tangles in a solid torus.References
- E. Brieskorn, Die Fundamentalgruppe des Raumes der regulären Orbits einer endlichen komplexen Spiegelungsgruppe, Invent. Math. 12 (1971), 57–61 (German). MR 293615, DOI 10.1007/BF01389827
- V. G. Drinfel′d, Quantum groups, Proceedings of the International Congress of Mathematicians, Vol. 1, 2 (Berkeley, Calif., 1986) Amer. Math. Soc., Providence, RI, 1987, pp. 798–820. MR 934283
- Michio Jimbo, A $q$-difference analogue of $U({\mathfrak {g}})$ and the Yang-Baxter equation, Lett. Math. Phys. 10 (1985), no. 1, 63–69. MR 797001, DOI 10.1007/BF00704588
- Michio Jimbo, A $q$-analogue of $U({\mathfrak {g}}{\mathfrak {l}}(N+1))$, Hecke algebra, and the Yang-Baxter equation, Lett. Math. Phys. 11 (1986), no. 3, 247–252. MR 841713, DOI 10.1007/BF00400222
- Louis H. Kauffman, An invariant of regular isotopy, Trans. Amer. Math. Soc. 318 (1990), no. 2, 417–471. MR 958895, DOI 10.1090/S0002-9947-1990-0958895-7
- Robion Kirby and Paul Melvin, The $3$-manifold invariants of Witten and Reshetikhin-Turaev for $\textrm {sl}(2,\textbf {C})$, Invent. Math. 105 (1991), no. 3, 473–545. MR 1117149, DOI 10.1007/BF01232277
- A. N. Kirillov and N. Yu. Reshetikhin, Representations of the algebra ${U}_q(\textrm {sl}(2)),\;q$-orthogonal polynomials and invariants of links, Infinite-dimensional Lie algebras and groups (Luminy-Marseille, 1988) Adv. Ser. Math. Phys., vol. 7, World Sci. Publ., Teaneck, NJ, 1989, pp. 285–339. MR 1026957
- G. Lusztig, Quantum deformations of certain simple modules over enveloping algebras, Adv. in Math. 70 (1988), no. 2, 237–249. MR 954661, DOI 10.1016/0001-8708(88)90056-4
- H. R. Morton and P. Strickland, Jones polynomial invariants for knots and satellites, Math. Proc. Cambridge Philos. Soc. 109 (1991), no. 1, 83–103. MR 1075123, DOI 10.1017/S0305004100069589
- Marc Rosso, Représentations irréductibles de dimension finie du $q$-analogue de l’algèbre enveloppante d’une algèbre de Lie simple, C. R. Acad. Sci. Paris Sér. I Math. 305 (1987), no. 13, 587–590 (French, with English summary). MR 917574
- N. Yu. Reshetikhin and V. G. Turaev, Ribbon graphs and their invariants derived from quantum groups, Comm. Math. Phys. 127 (1990), no. 1, 1–26. MR 1036112, DOI 10.1007/BF02096491
- Vladimir G. Turaev, The Conway and Kauffman modules of the solid torus with an appendix on the operator invariants of tangles, Progress in knot theory and related topics, Travaux en Cours, vol. 56, Hermann, Paris, 1997, pp. 90–102. MR 1603138
- David N. Yetter, Markov algebras, Braids (Santa Cruz, CA, 1986) Contemp. Math., vol. 78, Amer. Math. Soc., Providence, RI, 1988, pp. 705–730. MR 975104, DOI 10.1090/conm/078/975104
Bibliographic Information
- © Copyright 1993 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 118 (1993), 645-655
- MSC: Primary 57M25; Secondary 17B37
- DOI: https://doi.org/10.1090/S0002-9939-1993-1132416-9
- MathSciNet review: 1132416