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WEAK-INVARIANT PROPERTIES OF THE NORM TOPOLOGY

I. NAMIOKA AND R. POL

(Communicated by William J. Davis)

Abstract. A property (P) relative to the norm topology of a Banach space is

a weak-invariant if, whenever A and B are weakly homeomorphic subsets

of (possibly different) Banach spaces and (A, norm) has property (P), then

(B, norm) has property (P). We show that the property of being cr-discrete

and the property of being an absolute Souslin-^ space of weight < Hx , both

relative to the norm topology, are weak-invariants. These conclusions are ob-

tained from a result concerning maps of metrizable spaces into function spaces.

It is a well-known fact that a weakly separable subset of a Banach space is

separable relative to the norm topology. One can formalize this observation as

follows: a property (P) relative to the norm topology is called a weak-invariant if,

whenever A and B are subsets of (possibly different) Banach spaces such that

(A, weak) and (B, weak) are homeomorphic and (A, norm) has property

(P), then (B, norm) also has property (P). Thus the separability relative to the

norm topology and, indeed, the weight relative to the norm topology are weak-

invariants.
One of the consequences of the theorem in this note is that the a -discreteness

relative to the norm topology is a weak-invariant. By combining this result and

those in [5, 2], we also show that the property of being an absolute Souslin-Jj?"

space (defined later) of weight < N* in the norm topology is also a weak-

invariant. A subset A of a metrizable space M is said to be a-discrete if A =
[Jn^Li An with each A„ relatively discrete. If p is a metric on M compatible

with the topology, then the set A is cr-discrete if and only if A = U~ , B„ ,

where, for each n, there exists an en > 0 such that p(x, y) > e„ whenever

x ,y e B„ and x ^ y (cf. [6]). We use repeatedly the fact that a subset A of a

metrizable space M is cr-discrete if it is locally cr-discrete, i.e., for each x e M
there is a neighborhood U of jc such that U n A is cr-discrete [6, Lemma 2].

In this note, all topological spaces are assumed to be Hausdorff.

Let K be a compact space. Then C(K) denotes the Banach space of all real-

valued continuous functions on K with the supremum norm. The topology of

pointwise convergence is denoted by rp . The following is the main result of

the note.
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Theorem. Let K be a compact space, let M be a metrizable space, and let

u: M -+ (C(K), tp) be a continuous one-to-one map. If u(M) is a-discrete

relative to the norm topology, then M is o-discrete.

As preparation for the proof of the theorem, we list three lemmas. The first

one is an immediate consequence of Stone's well-known "lattice formulation"

of the Stone-Weierstrass theorem [7; 4, p. 241].

Lemma 1. Let K be a compact space and let L be a subset of C(K) which is

a lattice, i.e., max(/, g) and min(f, g) are in L whenever fi, g e L. Then

the closure of L in C(K) relative to rp coincides with the norm closure of L.

The next two lemmas are concerned with the a -discreteness. The proof of

Lemma 3 can be given by repeating an argument in [5], but we give it here for

the convenience of the readers.

Lemma 2. Let Jlf = {Mt : t e T} be a pairwise disjoint collection of o-discrete

subsets of a metrizable space M such that each selector S for Jf (i.e., Sr\Mt

is a singleton for each te T) is o-discrete. Then the union \]Jf is a-discrete.

Proof. Let p be a compatible metric on M. Then for each t e T, Mt =

Ifn^i M" where p(x, y) > e(t, n) > 0 for each pair of distinct points x, y in

Mp . For (k, n) e N x N, let

Mkn = \J{Mr.e(t,n)>l/k}.

If B is a (I/2k) ball in M, then BC\Mk„ is contained in a selector for Jf since

B n Mp is at most a singleton whenever s(t, n) > l/k . Hence by hypothesis,

B n Mkn is cr-discrete and so Mkn is locally cr-discrete for each (k, n). It

follows from an earlier remark that each Mk„ and hence the countable union

[\{Mk„ :(k,n)enxH} = \Jjr are cr-discrete.

The following notation will be used in the proof of the theorem as well as in

the next lemma. Well-order the given metrizable space M as M = {xa : a < p}

where p is the least ordinal with cardinality \p\ = \M\ and, for each £, < p,

let

(1) M4 = {jca : a < £j} .

Also let

(2) T = {£, < p : cj is a limit ordinal and Mi \ |J{M„ : a < dj} ̂  0}.

Lemma 3. Suppose that \p\ is a regular cardinal and M^ is o-discrete for each

dj < p. If there is a function cp:T —> p (= {a: a < p}) such that cp(£,) < c; for

each c; e T and \tp~x(a)\ < \p\ for each a < p, then M is o-discrete.

Proof. Extend the function cp to cp: p —» p by letting cp(£, + 1) = cj for £ < p

and cp(E,) = cj for each limit ordinal c; e p \ T. Then |^_1(a)| < \p\ still holds

for each a < p . Let p be a compatible metric for M, and let B(A, e) = {x e

M : /?-dist(jc, A) < e} for A c M and £ > 0. For £, < p and n e N, let

M^ = Mi\B(M9{i),l/n)     and     Mn = \J{M£ : dj < p}.

We show that M„ is cr-discrete by showing that M„ is locally cr-discrete. Let

x e M. Then x e Mio for some cjo < p. Since p is regular and \<p~x (a)\ < \p\
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for each a < p, there is a cji < p such that £0 < cp(£) whenever cji < £ <

^. Then dji < c; < // implies that 5(x, £) C B(MV(^), £) and consequently

5(jc , i) n Af„ c M{, which is a-discrete. To complete the proof, note that

U^ti Mi = IKM; \ Myg) : £ < X} , each M?K) being closed. Let jc e M and
let £n be the least ordinal with x e M^ . If £o is a successor, then p(cjn) < djo.

If cjo is a limit ordinal, then jc e Mia \ \J{Ma : a < £0} . Hence ^€T and

V(£o) < £0 by hypothesis. In either case x e Mio \ M9^) c U^li M„ . This
shows that M = (J^ti M, » and therefore Af is cr-discrete.

Proof of the Theorem. By dividing M into a countable number of subsets, we

may assume that for some a > 0

(3) ||w(*) - "0011 > a    f°r distinct x, y e M.

Then, for each .4 c M,

(4) \A\ = \A\.

To see this, let L be the lattice generated by u(A). If A is finite then (4)

is trivial. Otherwise, \L\ — \u(A)\ = \A\, u being one-to-one. Let L he the

norm-closure of L. Then by Lemma 1, L is closed relative to tp . Hence by

the continuity of u, u(A) c L. Taking (3) into account, we see that \A\ =

\u(A)\<\Lnu(M)\<\L\ = \A\.
We shall prove the theorem by induction on the cardinality of M. The

conclusion of the theorem is trivially true if M is countable. So assume that
\M\ > Ni and that the theorem is true for each metric space of cardinality less

than \M\.
Case I. Assume that \M\ is singular. Then there exists a family JH = {M, :

t e T} of pairwise disjoint subsets of M such that M = \}Jf, \T\ <\M\,
and \Mt\ < \M\ for each teT. By the inductive hypothesis, Mt is cr-discrete

for each teT, and each selector of J?, being of cardinality \T\, is also

cr-discrete. Therefore M is cr-discrete by Lemma 2.

Case II. Assume that \M\ is regular, and recall the notation introduced just

before Lemma 3. If £, < p is a limit ordinal, then

(5) Ms = \J{Ma : a < £}

by (1). Furthermore, by (1) and (4), \MA, < \p\ for each £ < p . Hence by the
inductive hypothesis, M^ is cr-discrete for each dj < p.

By Lemma 3, the proof is complete if we can construct a function cp: Y —> p

satisfying the conditions in the lemma. To this end, for each a < p, let La be

the lattice generated by u(Ma). Then

(6) \La\ < max(N0, |Afa|) < \p\    for each a < p.

For { € T, choose jc« e Mt \ \J{Ma : a < £,} (cf. (2)). By (5), u{M() is
contained in the tp-closure of \J{u(Ma) : a < dj} c LK^a : a < Q and

\\{La : a < dj} is a lattice. Therefore by Lemma 1, u(x$) is in the norm-

closure of \J{La : a < dj} . Hence there are cp(£) < £ and fi e L9^ such that

||w(x^) —^|| < a/2. If c; and n are distinct ordinals in T, then jc,* ̂ jc, and so

||m(jc*) - w(jc,,)|| > a by (3). Hence fi ^ f„ or c; —> fi is one-to-one. Hence by

(6), |^_I(a)| < \{£ e T : fii e La}\ < \La\ < \p\ for each a < p . This completes

the proof.
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If E is a Banach space then E can be considered to be a closed linear

subspace of C(K), where K is the unit ball of the dual E* provided with

the weak* topology. The topology of pointwise convergence on K induces the

weak topology on E. Hence the following corollary is the direct consequence

of the theorem.

Corollary 1. Let M be a metrizable space and E a Banach space. If u: M —>

(£,weak) is a continuous and one-to-one map and if u(M) is o-discrete relative

to the norm topology, then M is o-discrete.

The following corollary is mentioned in the introduction.

Corollary 2. The a-discreteness relative to the norm topology is a weak-invariant.

Proof. Let M and N he subsets of Banach spaces such that there is homeomor-

phism h: (M, weak) —> (TV, weak). By applying Corollary 1 to the composition

u of the identity map: (M, norm) —► (M, weak) and h , we see that M is

cr-discrete relative to the norm-topology whenever JV is.

A subset of a topological space X is called a Souslin-^ set in X if it is

obtained by applying the Souslin operation (i.e., the operation j/) to closed

subsets of X (cf. [3]; such a set is called "analytic" in [2, 8]). A metrizable space
M is said to be absolute Souslin-^ if, whenever a subset N of a metrizable

space X is homeomorphic to Af, ./V is a Souslin-,!?" set in X. A Souslin-/^"

set in a complete metric space is an absolute Souslin-^" space in the relative

topology (cf. [8]).

Corollary 3. The property of being an absolute Souslin-^ space of weight < Kx

in the norm topology is a weak-invariant.

Proof. As in the proof of Corollary 2, let M and N be, respectively, sub-

sets of Banach spaces E and F , and suppose that there is a homeomorphism

h: (M, weak) —> (N, weak) and that M is a Souslin-^" set of weight < ttx in

(E, norm). We must show that (N, norm) is an absolute Souslin-J^" space.

Note that (N, norm) is of weight < Ni since the weight relative to the norm

topology is a weak-invariant.

The rest of the proof depends heavily on results in [2]. We indicate with

asterisks those terms whose definitions are to be found in [2].

We first check that the map h: (M, norm) —» (N, norm) is co-cr-discrete*.

Let {A, : t e T} he a discrete family of subsets of M. If S is a selector

for the family {h(At) : t e T}, then S is cr-discrete by Corollary 2. Since

the weight of (N, norm) is < N,, by [5, Remark 2, p. 101], {h(A,) : t e T}
is a -discretely decomposable* in \j{h(At) : t e T} and hence in F (cf. [2,

p. 684]).
The graph G = {(jc, h(x)) : x e M} is closed in (M, norm) x (F, norm),

being closed in (M, weak) x (F, weak). Since M x F is a Souslin-^" set in

(E, norm) x (F, norm), G is a Souslin-^ set in the complete metric space

(E, norm) x (F, norm). Therefore (G, t) is an absolute Souslin-^" space

where t is the restriction to G of the product of the norm topologies. By [2,

Lemma 6.1], the projection (in the second coordinate) p: (G, t) —> (F, norm)

is co-cr-discrete*, and therefore, by [2, Corollary 4.2], p(G) = N is an absolute

Souslin-^" space in the norm topology.
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Remark. The results of Fleissner [1, Lemma 4.9 and Theorem 5.3] show that,

assuming the existence of supercompact cardinals, there is a model of set theory
in which the argument used in the proof of Corollary 3 can be repeated without
any weight restrictions. Hence under these hypotheses, the property of being

an absolute Souslin-^" space in the norm topology is a weak-invariant. Is the

same true in ZFC?

Example. In Corollary 2, one cannot replace "a-discreteness" with "discrete-

ness". To see this, let K = N U {oc} , the one-point compactification of N, and

let sf = {A c N : \A\ < oo}. Then M = {xA ■ A e sf} C C(K) is discrete
in the norm topology. Let f:N—>R be the function given by f(n) = \ for

n e N, and let N = {fxA :Aes/}c C(K). Then (M, weak) and (N, weak)
are homeomorphic, but each point of N is a limit point of N in the norm

topology.
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