Cardinalities of $\eta _ 1$-ordered fields
HTML articles powered by AMS MathViewer
- by Žikica Perović
- Proc. Amer. Math. Soc. 118 (1993), 379-384
- DOI: https://doi.org/10.1090/S0002-9939-1993-1132420-0
- PDF | Request permission
Abstract:
We show, using GCH, that a cardinal $\kappa$ is the cardinality of an ${\eta _1}$-ordered field iff ${\kappa ^\omega } = \kappa$. We also show, without using GCH, that a cardinal $\kappa$ is the cardinality of a maximally valued ${\eta _1}$-ordered field only if ${\kappa ^\omega } = \kappa$.References
- Norman L. Alling, A characterization of Abelian $\eta _{\alpha }$-groups in terms of their natural valuation, Proc. Nat. Acad. Sci. U.S.A. 47 (1961), 711–713. MR 175983, DOI 10.1073/pnas.47.5.711
- Norman L. Alling, On the existence of real-closed fields that are $\eta _{\alpha }$-sets of power $\aleph _{\alpha }$, Trans. Amer. Math. Soc. 103 (1962), 341–352. MR 146089, DOI 10.1090/S0002-9947-1962-0146089-X
- Garrett Birkhoff, Lattice theory, 3rd ed., American Mathematical Society Colloquium Publications, Vol. XXV, American Mathematical Society, Providence, R.I., 1967. MR 0227053
- Garrett Birkhoff and R. S. Pierce, Lattice-ordered rings, An. Acad. Brasil. Ci. 28 (1956), 41–69. MR 80099 C. C. Chang and H. J. Keisler, Model theory, North-Holland, Amsterdam, 1973.
- W. W. Comfort, A survey of cardinal invariants, General Topology and Appl. 1 (1971), no. 2, 163–199. MR 290326, DOI 10.1016/0016-660X(71)90122-X W. W. Comfort and A. W. Hager The relation ${m^k} = m$ in Stonian spaces, Notices Amer. Math. Soc. 17 (1970), 464.
- W. W. Comfort and Anthony W. Hager, Cardinality of ${\mathfrak {k}}$-complete Boolean algebras, Pacific J. Math. 40 (1972), 541–545. MR 307997, DOI 10.2140/pjm.1972.40.541
- Paul F. Conrad, Embedding theorems for abelian groups with valuations, Amer. J. Math. 75 (1953), 1–29. MR 53933, DOI 10.2307/2372611
- Paul Conrad, On ordered division rings, Proc. Amer. Math. Soc. 5 (1954), 323–328. MR 61582, DOI 10.1090/S0002-9939-1954-0061582-7
- Paul Conrad and John Dauns, An embedding theorem for lattice-ordered fields, Pacific J. Math. 30 (1969), 385–398. MR 246859, DOI 10.2140/pjm.1969.30.385 P. Erdös, A. Hajnal, A. Máté, and R. Rado, Combinatorial set theory: partition relations for cardinals, Akad. Kiadó, Budapest, 1984.
- P. Erdös, L. Gillman, and M. Henriksen, An isomorphism theorem for real-closed fields, Ann. of Math. (2) 61 (1955), 542–554. MR 69161, DOI 10.2307/1969812
- L. Fuchs, Partially ordered algebraic systems, Pergamon Press, Oxford-London-New York-Paris; Addison-Wesley Publishing Co., Inc., Reading, Mass.-Palo Alto, Calif.-London, 1963. MR 0171864
- L. Gillman, Some remarks on $\eta _\alpha$-sets, Fund. Math. 43 (1956), 77–82. MR 79069, DOI 10.4064/fm-43-1-77-82
- Sabine Koppelberg, Homomorphic images of $\sigma$-complete Boolean algebras, Proc. Amer. Math. Soc. 51 (1975), 171–175. MR 376475, DOI 10.1090/S0002-9939-1975-0376475-9
Bibliographic Information
- © Copyright 1993 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 118 (1993), 379-384
- MSC: Primary 12J15; Secondary 03E05, 03E75, 04A30, 12L99
- DOI: https://doi.org/10.1090/S0002-9939-1993-1132420-0
- MathSciNet review: 1132420