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SIMPLE ZEROS OF THE RIEMANN ZETA-FUNCTION

A. Y. CHEER AND D. A. GOLDSTON

(Communicated by William Adams)

Abstract. Assuming the Riemann Hypothesis, Montgomery and Taylor

showed that at least 67.25% of the zeros of the Riemann zeta-function are

simple. Using Montgomery and Taylor's argument together with an elementary

combinatorial argument, we prove that assuming the Riemann Hypothesis at

least 67.275% of the zeros are simple.

1. Introduction

Let N(T) denote the number of zeros of the Riemann zeta-function C(s) >

s = a + it, in the rectangle 0<cr<l,0<r<7\ Let NS(T) denote the

number of simple zeros of C(s) in the same rectangle. It is generally believed

that NS(T) = N(T), that is, all the zeros of C(s) are simple. In support of this

conjecture it has been shown by van de Lune, te Riele, and Winter [7] that the

first 1.5 x 109 zeros in the critical strip are simple and lie on a -\. Further,

Conrey [2] has shown that at least 40% of the zeros of C(s) are simple and lie

on a = \ . By 40% we mean that NS(T)/N(T) > .4 for all sufficiently large
T.

Assuming the Riemann Hypothesis (RH), Montgomery [8] proved that, for

any e > 0, more than | — e of the zeros are simple. Montgomery and Taylor

optimized the argument [9] to show that more than \ - 2~1/2cot(2-1/2) - e =

.67250... of the zeros are simple. More recently, Conrey, Ghosh, and Gonek

[1,4] found a new argument that shows that more than 19/27 - e = .70370...

of the zeros are simple; however, at present this result requires the assumption of

the Riemann Hypothesis and also either the Lindelof Hypothesis for Dirichlet

L-functions or an unproved sixth power moment for L-functions on the half

line.
In this paper we show that it is possible to obtain a small improvement in

Montgomery and Taylor's lower bound for simple zeros.

Theorem. Assuming the Riemann Hypothesis, we have NS(T) > .67275N(T)

for all sufficiently large T.
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This result is obtained by using Montgomery and Taylor's method together

with an elementary combinatorial argument. No additional information about

zeros of the zeta function is used. There is also a second method that can be

used to obtain an improvement in Montgomery and Taylor's result, but this

method requires more information on zeros. In [3] it was shown that assuming

RH there exists a positive proportion of consecutive distinct zeros whose dif-

ferences are less than .77 times the average spacing. This result together with

the method described in the next section leads immediately to an improvement

in Montgomery and Taylor's result. However, the results in [3] depend on the

same circle of ideas as used by Conrey, Ghosh, and Gonek in their work on sim-

ple zeros, although in this case the proof is much simpler. We do not develop

this second method here.

The main conclusion to be drawn from this paper is that Montgomery's the-

orem on F(a) (see next section) has not yet been fully exploited, and it is an

open question in harmonic analysis to determine the best result on simple zeros

attainable from Montgomery's theorem.

We would like to thank Professors J. B. Conrey and A. Ghosh for helpful dis-

cussions. The second author would also like to thank the Institute for Advanced

Study where some of this work was completed.

2. Montgomery and Taylor's method

Let L - (l/2n)logT. The Riemann-von Mangoldt formula states that

(1) N(T)~TL,     asT^oc.

Assuming the Riemann Hypothesis, a typical zero of the Riemann zeta-function

may be denoted p = \ + iy and the multiplicity denoted by mp . Define

(2) N*(T)=   £  mp,
0<y<T

where the sum is over all zeros counting multiplicity. We can obtain a lower

bound for NS(T) from an upper bound for N*(T) since

(3) NS(T)>  £ (2 -mp) = 2N(T)-N*(T).
0<y<T

To obtain an upper bound for N*(T), we begin by defining Montgomery's

function

(4) F(a) = F(a,T) = ^z     £     e(a(y - y')L)w(y - y'),
0<y,y'<T

for T > 2, where e(u) = e2n,u and w(u) = 4/(4 + u2). The main information

about F(a) is contained in the following theorem [8].

Theorem (Montgomery). The function F(a) is real, even, and nonnegative)

Assuming the Riemann Hypothesis, we have

(5) F(a) = T-2alogT(l+o(l)) + a + o(l),     as T -» oo ,

uniformly for 0 < a < 1 .

'Actually Montgomery proved a slightly weaker result. Mueller and Heath-Brown independently

noted that F(a) was actually nonnegative.
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Montgomery conjectured that F(a) = 1 + o(l), as T —► oo uniformly for

a > 1 in bounded intervals. This conjecture together with the theorem has two

important consequences:

,6, »(T,,)=      E      l„TLJ\-(™£)\u
0<y,y'<T JU \ /

0<y-/<fi/L

and

(7) N*(T) ~ TL.

The result in equation (6) is the pair correlation conjecture, which has received

strong numerical verification by Odlyzko [10, 11]. Equation (7) implies by (1)

and (3) that almost all the zeros of the zeta function are simple (asymptotically

100%). Unfortunately, Montgomery's conjecture appears difficult to prove, par-

ticularly since on RH the conjecture has been shown to be equivalent to a second

moment asymptotic formula for primes in short intervals [6]. Therefore, if we

only assume RH we are forced at present to replace (6) and (7) with partial

results obtained from Montgomery's theorem alone.

Let r(u) e Lx and define the Fourier transform by

/oo r(u)e(—au) du.
-oc

If r(a) is also Lx , we have almost everywhere the inversion formula

/oo
r(a)e(ua) da.

-oo

On multipling equation (4) by r(a) and integrating, we obtain

/oo
r(a)F(a)da.

v<y,y^i "°°

To apply the theorem we now assume r(a) is even and has support in [-1, 1].

We thus obtain

r(0)7V*(r) + 2       £       r((y-y')L)W(y-y')

0<y,y'<T
(9) o<>Y

= I f(0) + 2 f  ar(a) da + o(\)\ TL.

If we now assume r(u) > 0, then the sum over pairs of zeros 0 < y - y' is

nonnegative, and we obtain

(.0) N-(T)<{m + 2l°a™''a + °m}TL.

The functions k(u) = (™)2 and k(a) = max(l - \a\, 0) have the re-

quired properties used above and when substituted into (10) give N*(T) <

(f + o(l))TL, which implies by (1) and (3) NS(T) > (\-o(l))TL.
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To optimize the above argument, we need to minimize the right-hand side

of (10), where the minimum is taken over the class of all Lx functions that

are nonnegative, even, and have Fourier transforms with support in [-1, 1].

Montgomery and Taylor solved this problem using a variational argument [9],

and Gallagher [5] has treated a slightly more general problem. Without loss of

generality we may assume f(a) = h(a) * h(-a), where h(a) is Lx and has

support in [-5,5]. The extremal function for this problem is any constant

times h(a) = cos(v^a) for \a\ < \ and zero elsewhere. Normalizing the final

extremal function to be 1 at the origin, we obtain

(11) S(U)^ ] (sin(\(yf2-2nu))  | sin({(y/2 + 2nu))\2

1 - cos(\/2) \       y/2-2nu y/2 + 2nu       J

and

(12)

*(a) = ( 1^(72) (2*2 **W - l«D) + i(» - H)«»(^))    if M < 1.

[ 0   otherwise.

Using (12) in (10), we obtain

7V*(r)<(i + 2-1/2cot(2-1/2) + o(l))rL.

In Figure 1 we compare the graphs of the functions k(u) and g(u) and their

transforms.
In examining the above argument, the only loss occurs in discarding the sum

over pairs of zeros in going from (9) to (10). If we could prove that

(13) £     r((y-y')L)w(y-y')>cTL,

0<y,y'<T
0<y-y'

then we could replace (10) with

(r(0) + 2 flaf(a)da-2c + o(l))
(14) N*(T)<1—-J0     \>0)-K-*-\tL.

0 8      \ 0.8^^     A

0.6- Y 0.6 ^^

0.2 \ 0.2 *(«)%^
\ k/u) ^^

o!5 1. "7(7) 1.5 2. o!2       04       06       0^8 1.

Figure 1. k(u) and g(u) (left) and k(a) and g(a) (right).
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To improve on Montgomery and Taylor's bound for N*(T), we consider

(14) with r(u)  taken to be the function  g(u)  in (11).   The function g(u)

is even and has positive zeros at Xk, k = 1,2,3.  The values Xk are
the roots of the equation tan(7iM) = tan(2~xl2)/(2xl2nu) for u > ^. We see

that 1 < Xx <2<X2<3<X3<4<XA<---, and that Xk - k J. 0.
The first few roots are Xx = 1.05727... , X2 = 2.03006... , X3 = 3.02024... ,
Xa, — 4.01523... , and A5 = 5.01220.... We need to prove there are normalized
differences (y - y')L away from these values. The idea we use is based on the

fact that the numbers (y-y')L are differences. Consider the set of consecutive

differences between distinct zeros. By Montgomery's Theorem it may be shown

that there are at least \TL such differences, and hence the average length

of these differences is at most \ TL. If all of these differences are of length

X\, X2, X3, ... , then there must be at least about \TL differences of length

Xi. From this we see that there is a positive proportion of next to consecutive

differences of length 2XX . Since 2XX ̂ X2, we have produced some differences

whose lengths are not at the zeros of g(u). The idea of making use of the

property that the set {Xk} is not formed from multiplies of Xx was suggested

to us by J. B. Conrey.

3. Proof of the Theorem

Let {Xk} denote the sequence of positive zeros of g(u) defined at the end of

the last section. Let {yd} denote the sequence of imaginary parts of the distinct

zeros of C(s), and let

(15) MD-  E  1= E =r
0<Yd<T 0<y<T      p

he the counting function for distinct zeros. We can obtain a lower bound for

Nd(T) from an upper bound for N*(T) by the following argument of Ghosh.
Since

2NS(T)<   V   {m" ~ 2){m" ~ 3) = N*(T) - 5N(T) + 6Nd(T),
0<y<T mp

we obtain by (1) and (3)

(16) N{T) > 5NlT)-N*rT) + 2N,(T) ^ 1 ^
6 2 2

We assume the Riemann Hypothesis so that the zeros lie on a line and con-

sider the consecutive differences between distinct zeros. Let )v+ denote the

next distinct zero greater than yd . Let

(17) yrd{T,u)=     £     1,

0<yd<T
yd+-7d<u/L

count the number of consecutive differences between distinct zeros of length

<u/L.
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n able d    |   2b 2c
Aj A-2

Figure 2. Lower rectangles for g(u).

Now consider Figure 2 and suppose 0 < a < b < Xx < c < d < X2 and

X2 <2b <2c < X3. We define the number of consecutive differences between

distinct zeros with lengths in the intervals in Figure 2 by

A=jrd{T,a),        B = Jfd(T, b) - Ad(T, a),

(18) N = jrd(T,c)-jrd(T,b),        C = JTd(T, d) - JTd(T, c),

R = Nd(T)-yVd{T,d).

Clearly

(19) A + B + N + C + R = Nd(T),

and since the sum of the lengths of all the consecutive differences is ~ T by

(1), we have

(20) aB + bN+ cC + dR<(l+o(l))TL.

Using (19) we eliminate R in equation (20) and solve for N to obtain

N > dNd(T) - (1 + o(l))TL -dA-(d- a)B - (d - c)C

~ d - b

We now define N2 = N2(b, c) to be the number of next to consecutive gaps

of distinct zeros of length l/L, with 2b < I < 2c. Clearly 7V2 is greater than

or equal to the number of pairs of abutting distinct gaps counted by N (each

pair counted once), and hence by a simple combinatorial argument, we obtain

N2 > max{2/V - Nd(T) - 1, 0}.

By equation (21) we conclude

(22)      N, > 2 j ^Nd{T) -(l+o(l))TL-dA-(d-a)B-(d- c)C 1
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We now complete the proof of the theorem.    By Figure 2, letting  h =

min(g(c), g(d)) and ;' = min(g(2b), g(2c)), we have

(23)
£     g((7 - Y')L)w(y - y') > g(a)A + g(b)B + hC + jN2 - o(TL)

0<y,y'<T
0<y-y'

We choose a, b, c, and d so that the coefficients of A, B, and C are

positive in (23), which implies since A > 0, B > 0, and C > 0 that

(24) £    g((y - y')L)w(y - /) > ^Z_ f^±Nd{T) _ TL\ _ o{TL)y

0<y-/

It is easy to maximize numerically the right-hand side of (24) by choosing b

as large as possible in the interval X2/2 < b < Xx while satisfying the three

constraints. We find the choice a = 1.0233, b = 1.033396, c = 1.47,
d = 1.99, with Nd(T) > .83625^7. (using Montgomery's bound for N*(T)
in (16)) gives a lower bound in (24) of 0.00012636 7\L, which by (14) gives
N*(T) < (1.327499296...-2(0.00012636))TL < 1.32724667X. The theorem
now follows from (3).

4. Final comments

The function F(a) is real and even because y and y' can be switched, and

F(a) > 0 follows immediately from the easily verified identities

P, s        2     [°°     ^      e(ayL)     2 At
F{a) = WZ U       E      l+(,-y)2      di

(25) 0<^r

1     f°°
= TT E  ^(y(«^ + ̂ /2n))   e-^dt

J-°°   0<y<T

Thus the properties of F(a) being real, even, and nonnegative do not depend

on y being the imaginary part of a zero of the zeta function, since (25) will

hold for the y 's being any sequence of real numbers. We see that only equation

(5) in Montgomery's Theorem tells us anything about zeros of the zeta function.

We can therefore ask the following question of harmonic analysis: Given any

sequence of real numbers y that satisfy (1) and the associated function F(a)

given in (4) satisfying (5), what is the maximum of N*(T) defined in (2) for

all sufficiently large T ?

Suppose we drop equation (1), replace in equation (4) the expression (y-y')L

by any set of real frequencies v , and assume Montgomery's Theorem holds for

this function F(a). Then we can ask the question: what is the maximum of
A/*(r) = #{i/ = 0}?

Through numerical work it seems very likely that

^11 ~i + 2-'/2cot(2-1/2)= 1.327499...
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is asymptotically attained in this case and g(u) is the optimal kernel. Thus any

improvement over this result most likely depends on using additional properties

of the frequencies v . The improvement we obtained depends on using (1) and

that the frequencies v = (y — y')L are differences, but our argument is not

optimal. Thus it remains an open problem to determine the best result on

simple zeros that follows from Montgomery's Theorem.
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