Inequalities in the most simple Sobolev space and convolutions of $L_ 2$ functions with weights
HTML articles powered by AMS MathViewer
- by Saburou Saitoh
- Proc. Amer. Math. Soc. 118 (1993), 515-520
- DOI: https://doi.org/10.1090/S0002-9939-1993-1134626-3
- PDF | Request permission
Abstract:
For the most simple Sobolev space on $\mathbb {R}$ composed of real-valued and absolutely continuous functions $f(x)$ on $\mathbb {R}$ with finite norms \[ {\left \{ {\int _{ - \infty }^\infty {({a^2}{f’}{{(x)}^2} + {b^2}f{{(x)}^2}) dx} } \right \}^{1/2}}\qquad (a,b > 0),\] we shall apply the theory of reproducing kernels, and derive natural norm inequalities in the space and the related inequalities for convolutions of ${L_2}$ functions with weights.References
- N. Aronszajn, Theory of reproducing kernels, Trans. Amer. Math. Soc. 68 (1950), 337–404. MR 51437, DOI 10.1090/S0002-9947-1950-0051437-7
- W. D. Evans and W. N. Everitt, A return to the Hardy-Littlewood integral inequality, Proc. Roy. Soc. London Ser. A 380 (1982), no. 1779, 447–486. MR 660418, DOI 10.1098/rspa.1982.0052
- I. I. Hirschman and D. V. Widder, The convolution transform, Princeton University Press, Princeton, N. J., 1955. MR 0073746
- Saburou Saitoh, Hilbert spaces induced by Hilbert space valued functions, Proc. Amer. Math. Soc. 89 (1983), no. 1, 74–78. MR 706514, DOI 10.1090/S0002-9939-1983-0706514-9
- Saburou Saitoh, A fundamental inequality in the convolution of $L_{2}$ functions on the half line, Proc. Amer. Math. Soc. 91 (1984), no. 2, 285–286. MR 740187, DOI 10.1090/S0002-9939-1984-0740187-5
- Saburou Saitoh, On the convolution of $L_2$ functions, Kodai Math. J. 9 (1986), no. 1, 50–57. MR 825951, DOI 10.2996/kmj/1138037149 —, Theory of reproducing kernels and its applications, Pitman Res. Notes Math. Ser., vol. 189, Longman Sci. Tech., Harlow, England, 1988.
- Harold S. Shapiro, Topics in approximation theory, Lecture Notes in Mathematics, Vol. 187, Springer-Verlag, Berlin-New York, 1971. With appendices by Jan Boman and Torbjörn Hedberg. MR 0437981, DOI 10.1007/BFb0058976
Bibliographic Information
- © Copyright 1993 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 118 (1993), 515-520
- MSC: Primary 46E35; Secondary 30C40
- DOI: https://doi.org/10.1090/S0002-9939-1993-1134626-3
- MathSciNet review: 1134626