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Abstract. Assuming that E is a distinguished locally convex space and F is

a complete locally convex space, we prove that there exists an open subset V

of E" that contains E and such that every holomorphic mapping f:E—>F

whose restriction f\B is o(E, £')-uniformiy continuous for every bounded

subset B of E has a unique holomorphic extension /: V —> F such that f\B

is a(E" , £')-uniformly continuous for every bounded subset B of V . We

show that in many cases we can take V = E" . This is the case when E" is a

locally convex space where every G-holomorphic mapping that is bounded in a

neighbourhood of the origin is locally bounded.

Introduction

Given locally convex spaces E and F , we consider the problem of extending

an analytic mapping f:E —► F to an analytic mapping /:E" —> F . It is clear

that if we have such extension of / to E" , then we can extend this / to every

locally convex space G such that E c G and there exists S:G —> E" linear,

continuous with S\E = id# . In case of Banach spaces we know that E is an

Jz^o -space in the sense of Lindenstrauss and Pelczynski if and only if for every

locally convex space G that contains E as a subspace there exists S: G —► E"

linear, continuous and such that S\E = id^ (cf. [10, Example 2(c)]). The spaces

c0, loo, Loo(p), and C(K) are examples of such spaces.

We recall that the problem of extending an analytic mapping was asked by

Dineen in [3]. The first general positive answer to Dineen's question was given

by Boland in [2]; namely, he proved that if F is a closed subspace of a dual G of

a nuclear Frechet space then every holomorphic function on F has an extension

to a holomorphic function on G. Since then, a lot of progress has been made,

mainly for holomorphic functions on (DFN)-spaces. Meise and Vogt gave in [7]

an example of a Frechet nuclear space G where the holomorphic Hahn-Banach

theorem is not valid. The case of Banach spaces was studied first by Aron
and Berner in [1]. They showed that every holomorphic function on a Banach

space E that is bounded on the bounded subsets of E can be extended to a

holomorphic function on E" that is bounded on the bounded subsets of E" .

As a consequence they proved that a holomorphic function defined on c0 can
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be extended to a holomorphic function on /^ if and only if it is bounded on

every bounded subset of c0 ■ We are going to consider classes of holomorphic

mappings defined on locally convex spaces. This paper generalizes results of [8,

9].

Notation and terminology

Let E and F be complex Hausdorff locally convex spaces. Given a subset

A of E, we denote by A0 the polar of A with respect to o(E', E) and by

A00 the polar of A0 with respect to o(E", E'). The set of all continuous

seminorms on F is indicated by CS(F) and the set of all neighbourhoods of

x e E is indicated by %(x); given a subset X of E, the set of all bounded

subsets B of E such that B c X is denoted by 38(X) and the set of all
absolutely convex elements of 33(X) is denoted by 33ac(X). The topology on

E' of uniform convergence on the bounded subsets of E is denoted by /?;

EL and (E'g)'~ are written E' and. E", respectively. If X is a subset of E

and a e CS(F), we define ||/||Q x := sup{a o f(x):x e X} for every mapping

f.E^F.
As usual, Hq(E , F) denotes the space of all C7-holomorphic mappings from

E into F, H(E, F) denotes the space of all holomorphic mappings from E

into F, and 3°("E, F) denotes the space of all continuous «-homogeneous
polynomials from E into F . We recall that P:E —> F is an n-homogeneous

polynomial if and only if there exists an n-linear mapping A:En —> F such

that P(x) = A(x, ... , x) for all x e E ; in this case we denote P = A .

For all n e N, let J2payWU("E, F) be the space of all n-linear mappings

A:E" —> F such that, for every B e 33(E), A\Bn is uniformly continuous on

(B, a(E, E'))n . The space of all elements of £?a,wu(nE, F) that are continu-

ous is denoted by S?wu(nE, F).

By definition Hb(E, F) := {/ e H(E, F): \\f\\ayB < oo Va e CS(F), Vfi e
33(E)} and xb is the locally convex topology on Hb(E, F) generated by the

seminorms || \\a,B when B ranges over 33(E) and a ranges over CS(F).

We will be particularly interested in the following spaces:

3ewu(nE, F) := {P e 3s(nE, F):P\B is uniformly o(E, £")-continuous

V5e 33(E)),

3BW.U("E", F) := {P e 3°(nE", F): P\B°° is (uniformly) o(E", £")-continuous

Vfle 33(E)},

H%U(E, F) := {feHG(E, F):f\B is uniformly o(E, £')-continuous

Vfle 33(E)},

Hf"(E",F) := {fi e HG(E", F): fi\B00 is (uniformly) o(E", E')-continuous

VB e 33(E)}.

Let HWU(E, F) := H™"(E, F)nH(E, F) and HW'U(E", F):=Hfu(E", F)D

H(E",F). We remark that if / e HWU(E, F) then d"fi(x) e 3*wu(nE, F)
for all x e E and for all n e N; if / e HW'U(E", F) then dnfi(x) e
3BW.U("E", F) for all x e E" and for all n e N.

A locally convex space E is said to be distinguished if every o(E", E')-

bounded subset of its bidual E" is contained in the o(E", £')-closure of some

B e 33(E). For further notation and basic results we refer to [4-6].
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THE EXTENSION THEOREM

We are grateful to the referee who improved the original version of this paper

by proving the following result:

Lemma 1. Let E be a locally convex space. Then for every neighbourhood V

of zero in E the set Vxx := Ubg^uk) B°° /5 a neighbourhood of zero in E".

Proof. Without loss of generality we may suppose V closed and absolutely

convex. Since E" = \Jb€^c(E) B°° > i* *s c^ear tnat

(i) v°° =   (J   mr.
Be&K(E)

We claim that

(2) (VnB)00 d hv00 nB°°)

for all B e 33ac(E). If (2) is true,

t/xx=      y    Boo=     jj    ^Bf)V)00D^     \J    (V00nBO0)

B€&ac(V) B€&K(E) B€^„C(E)

= \   rn   U   B°°) =\v°°
\ B€^ac(£) /

and since V e %(0), V is an equicontinuous subset of E' (and hence a

bounded subset of E') and so V00 is a neighbourhood of zero in E" . Thus it

suffices to show (2). Since V is absolutely convex and closed, it is o(E, .En-

closed and we have

(v n B)00 = (T(V° u B°)a{E' 'E))°

where r(V°uB°) is the convex hull of V°UB° . As V° and B° are absolutely
convex sets, it is easy to verify that

(3) r(V°UB°)c V° + B° C2V(V°UB°).

Since V° is an equicontinuous o(E', £)-closed set, by Alaoglu-Bourbaki we

have that V° is a(E', £')-compact. Now V° is o(E', £)-compact and B° is

a(E', Enclosed, and thus V° + B° is o(E', E)-closed. Hence

T(V° U B°)°(E''E) c V° + B°

and (V° + B°)° c (T(V° U B°)J{E'*E))° = (V n B)00 ; using the second part of

(3) we have V° + B° c 2Y(V° u fi°) and so (K° + fi0)0 D (2r(F° U fl0))0 =

\(V° U B°)° since (r(^))° = A0 . Finally (K° U B°)° = V00 n fl00 , and so

i(i/°°nfl00)= x-(v° n B°)° c (V° + B°)° c (Fnfl)00 and (2) is true.

Proposition 2. Le/ £ a«d F be locally convex spaces, F complete. Then for

every A e ^fayWU(nE, F) there is a unique extension AeS?a(nF", F) such that

for every B e 33(E)  the restriction of A  to (B°°, a(E", E'))n  is uniformly
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continuous. Moreover, for every a e CS(F) we have \\A\\ayB» = MIL,(fi<*>)"

for all B e 33(E) and the mapping Tn:^a,wu(nE, F) -» S?a(nE", F) defined

by T„(A) := A for every A e J2?a,wu("E, F) is linear and injective. If A e

3a,wu{nE, F) is symmetric then A is symmetric as well.

Proof. Take A e &a>wu(nE, F). Since for a given B e 33ac(E) the set B" is

dense in (B00, o(E"', E'))n , A\B" is uniformly continuous on (B, o(E, E'))n

and o(E", E')\E — a(E, E'), by [6, Theorem 2, p. 61] there is a unique uni-

formly continuous mapping AB:(B00)" -> F that extends A\Bn . By the unique-

ness of extensions Ac\(B°°)n = AB whenever B c C, this shows that A(x) :=

AB(x) if x e B00 defines an n-linear mapping from (£")" = (UBe<%c(£)5°T

into F . The other statements are obvious by the density and uniqueness of the

extension.

Proposition 3. Let E be a locally convex space and let F be a complete locally

convex space. Then for every m e N there is a unique isomorphism (onto)

1 m'-^wu(   tL , t )     ► ̂w"u(   £>    > r )

such that

(1) fmP\E = P forall Pe3>wu(mE,F).

(2) For every a e CS(F), \\fmP\\ayBoo = \\P\\ayB for all B e 33ac(E).

Proof. Let Tm he as in Proposition 2 and define TmA := (TmA)A for every

A e 5?wu(mE, F), i.e., fmA(x) := TmA(x,... , x) for all x e E". Since (1)

and (2) follow directly from Proposition 2, all we have to show is that TmA is

continuous whenever A e f2?wu(mE, F). Since A is continuous, there exists

V e %(0) such that V is absolutely convex and ||^||q,k < oo. For each

B e 33ac(V) it is clear that

—   «• mm   •"■ mm   ~
\\TmA\\ayBoo < \\TmA\\ay{Boo)m = II^IU.s". < -^yll^lU.B ̂  "^]"II^HK-

So, ||rwv4||a i/xx < (mmIm\)\\A\\v < oo and so TmA is continuous by [4,

Proposition 1.14 and Corollary 1.15].

Lemma 4. Let E and F be locally convex spaces and let f:E —> F be a

mapping that is weakly uniformly continuous on each bounded subset of E.

Then f(B) is precompact for every B e 33(E).

Proof. Since / is weakly uniformly continuous on B , given V e ^f(O) there

exist cpi,... , cpk e E' such that whenever x, y e B with \<pt(x - y)\ < 1 for

all i= 1, ... ,k, f(y) e f(x) + V . As the mapping

xp: E -»Ck

x^(cp\(x), ... , cpk(x))

is continuous, we have xp(B) precompact in C^ (which we endow with the sup

norm). So there exists xx, ... , xn e B such that given any x e B there exists

Xj (1 < j < n) such that \fi(x) - <Pi(Xj)\ < 1 for every i — 1, ... , k. Thus
given x e B there exists x, (I < j < n) such that f(x) e f(Xj) + V, which

shows that f(B) c IJ"=i /(■*;) + v (f(xj) e fi(B)). So fi(B) is precompact.
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Corollary 5. Let E and F be locally convex spaces. Then HWU(E, F) c

Hb(E,F).

Lemma 6. Let E, F be locally convex spaces and fi e HG(E" , F) such that

WfWa.B- < oo for all B e 33(E)  and for all a e CS(F).   If for all y e
E", fly) = T,Zopk(y) with Pk e 3»w.u(kE", F) for all k e N, then fi e

Hf"(E",F).
Proof. Let B e 33(E) and a e CS(F). Using the Cauchy inequalities we get

n /    oo       .   \

/-£p* <(   £   2*)-H/lla.2ir*>->0   asn-oo
£=u a,B00        \k=n+\        I

since ||/||a,2B<>» < oo by hypothesis. Since (Y,"k=opk)\B00 is uniformly

o(E", £')-continuous for every n and B00 is o(E", £')-compact, f\B00 is

uniformly a(E", E^-continuous.

Remark 7. If E is distinguished then H™'U(E", F) = {/ e HG(E" ,F):f\X
is o(E", .E')-continuous for every X e 33(E")}, which is trivially contained
in H%U(E",F). Let rb be the locally convex topologies on H%U{E, F) and

H^'"(E", F) generated by the seminorms ||/||q,b = sup{ao/(x):x e B} when

a ranges over CS(F) and B ranges over 33(E) and 33(E"), respectively.

Theorem 8. Let E be a locally convex space and let F be a complete lo-

cally convex space. Then for each fi e HWU(E, F) there exists a unique f e

Hfu(E",F) such that f\E = f. Moreover for each a e CS(F) there exists

W e %"(0) such that ||/||a,»' < oo. If in addition E is distinguished, the

mapping Tf :- fi is a continuous linear mapping from (HWU(E, F), xb) into

(Hf"(E",F),rb).
Proof. Unicity follows from density of B in (B00 , a(E", E'))n . Given / e

HWU(E,F), let us define

f(y):=f2?k(^P-)(y)   for ally eE",

where Tk is the unique isomorphism defined in Proposition 3. First of all we

want to show that fi(y) e F for all y e E". Let Pk = dkf(0)/k\ and Pk =

TkPk for all fc = 0,l,2,.... Given any y e E" there exists a B e 33ac(E)
such that yeB°°. For each a e CS(F),

(N \ N

Y^Pkiy) )<Y,a°pk(y)   for all TV = 0,1,2,....
k=0 J        k=0

So if Y^k=oa ° P~k(y) converges when N -> oo for every a e CS(F), then

(Z)f=o ̂ t(>'))^=o is a Cauchy sequence in F that is complete, and we infer that

Hk=opkiy) converges in F as JV -> oo . Now, for each a e CS(F) we have

N N N

J> o Pk(y) < Y, \\K\\a,Bo° = Y, WPkWa.B
k=0 k=0 k=0

< (E ^jA • H/IU.M -» 2 • II/II-.2H < oo   as N - oo.
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Consequently f(y) := YX=opk{y) e F for every y e E" and so fieHG(E",F).

Let us show that / e Hq'u(E", F); it follows from Lemma 6 and

oo oo / oo      .   \

ii/ik*» < En^ik*- = E\\pk\\*.B< E 2^ ii^-2* < °°
*:=0 k=0 \k=0       J

for all a e CS(F) and for every B e 33(E). The r6-continuity of T, when

E is distinguished, follows from \\Tfi\\ayBoo < 2\\f\\a 2B for every a e CS(F)

and Be33(E).
Finally, since / e H(E, F), there exists V e %(0) absolutely convex such

that ||/||Q, v < Ma < oo for each a e CS(F). So, for every k"= 0, 1, 2, ... ,

l|fl/tlla,(K/2)*x   =        SUP        \\Pk\\a,L°°=        SUP        \\Pk\\a,L
Le&x(V/2) L€&K(V/2)

and consequently ||/lk(i72)** < oo. Now it is enough to remember that

(\V)XX e 2fe»(0) by Lemma 1.

Remark 9. (1) If £ is a locally convex space such that every / e HG(E", F)

that is bounded in a neighbourhood of the origin is locally bounded, then we

may write HW'U(E", F) instead of Hfu(E",F) in Theorem 8 and T is

an isomorphism between (HWU(E,F), rb) and (HW'U(E",F), zb) if E is

distinguished. For instance, all (DFC)-spaces E satisfy the above conditions.

(2) If E is a bornological space that contains a fundamental sequence of

bounded sets (B„)™=x and such that E' is distinguished, then by [10, Proposi-

tion 8] of / is locally bounded and so fi e HW'U(E", F) and T is a topological

isomorphism between (HWU(E, F),rb) and (HW'U(E",F), rb).

Theorem 10. Let E be a distinguished locally convex space and let F be a

complete locally convex space. Then for each fi e HWU(E, F) there exists an

open subset U of E" and a unique fi e H(U, F) such that

(1) EC U,

(2) j)E = f.
If in addition E is distinguished, we have

(3) f\X is o(E", E')-continuous for every Xe33(U).

Proof. From Theorem 8 there exists a unique / e Hg'u(E", F) such that

f\E = fi. For each a e E we define fia:E —► F by fa(x) := f(x+a). It is clear

that fa € HWU(E, F). Now we prove as in Theorem 8 that there exists a unique

fa e Hfu(E",F) such that fa\E = fia and there exists Va e %(0) absolutely

convex such that ||^||Q,(Ka/2)xx < °° for every a e CS(F). Let oa(x) := x + a

for every x e E" . It is clear that fia = fi ° oa\E and / o oa\E = fa = fa\E.

Since fooa e Hg'u(E", F), the uniqueness of the extension gives fia = fi°oa .

So

Wf\\a,a+(Val2)**   = H/0(7aL,(K,/2)x*  = WfaWa , (Va/2)* x   < °°-

If Wa is the interior of (\Va)xx for each a e E and we define U = ljag£a +

Wa c E" then it is clear that U is an open subset of E" that contains E . It

is also clear that / is locally bounded in U and so fi e H(U, F).
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We remark that Hfu(E",F), HW'U(E",F), and HWU(E, F) with the

pointwise multiplication are algebras if F is an algebra, and we can state the

following corollaries.

Corollary 11. Let E be a locally convex space and let F be a complete locally

convex space with a structure of algebra. The isomorphism T:HWU(E, F) ->

Hfu(E", F) defined by Theorem 8 satisfies T(f-g) = Tf-Tg for all fi, g e
HWU(E,F).

Proof. It is a consequence of the unicity of the extension.

Corollary 12. Let E be a locally convex space and let F be a complete locally

convex space. Let G be a locally convex space such that E c G and there exists

S:G —► E" linear, continuous with S\E = idf . Then every fi e HWU(E, F) has

an extension fi e HWU(G, F).

Proof. It is enough to define / := (Tf) o S.
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