Extension of holomorphic mappings from $E$ to $E”$
HTML articles powered by AMS MathViewer
- by Luiza A. Moraes
- Proc. Amer. Math. Soc. 118 (1993), 455-461
- DOI: https://doi.org/10.1090/S0002-9939-1993-1139471-0
- PDF | Request permission
Abstract:
Assuming that $E$ is a distinguished locally convex space and $F$ is a complete locally convex space, we prove that there exists an open subset $V$ of $E''$ that contains $E$ and such that every holomorphic mapping $f:E \to F$ whose restriction $f|B$ is $\sigma (E,E’)$-uniformly continuous for every bounded subset $B$ of $E$ has a unique holomorphic extension $\tilde f:V \to F$ such that $\tilde f|B$ is $\sigma (E'',E’)$-uniformly continuous for every bounded subset $B$ of $V$. We show that in many cases we can take $V = E''$. This is the case when $E''$ is a locally convex space where every $G$-holomorphic mapping that is bounded in a neighbourhood of the origin is locally bounded.References
- Richard M. Aron and Paul D. Berner, A Hahn-Banach extension theorem for analytic mappings, Bull. Soc. Math. France 106 (1978), no. 1, 3–24 (English, with French summary). MR 508947, DOI 10.24033/bsmf.1862
- Philip J. Boland, Holomorphic functions on nuclear spaces, Trans. Amer. Math. Soc. 209 (1975), 275–281. MR 388094, DOI 10.1090/S0002-9947-1975-0388094-3
- Seán Dineen, Holomorphically complete locally convex topological vector spaces, Séminaire Pierre Lelong (Analyse) (année 1971–1972), Lecture Notes in Math., Vol. 332, Springer, Berlin, 1973, pp. 77–111. MR 0377512
- Seán Dineen, Complex analysis in locally convex spaces, Notas de Matemática [Mathematical Notes], vol. 83, North-Holland Publishing Co., Amsterdam-New York, 1981. MR 640093
- John Horváth, Topological vector spaces and distributions. Vol. I, Addison-Wesley Publishing Co., Reading, Mass.-London-Don Mills, Ont., 1966. MR 0205028
- Hans Jarchow, Locally convex spaces, Mathematische Leitfäden. [Mathematical Textbooks], B. G. Teubner, Stuttgart, 1981. MR 632257, DOI 10.1007/978-3-322-90559-8
- Reinhold Meise and Dietmar Vogt, Counterexamples in holomorphic functions on nuclear Fréchet spaces, Math. Z. 182 (1983), no. 2, 167–177. MR 689294, DOI 10.1007/BF01175619
- Luiza A. Moraes, The Hahn-Banach extension theorem for some spaces of $n$-homogeneous polynomials, Functional analysis: surveys and recent results, III (Paderborn, 1983) North-Holland Math. Stud., vol. 90, North-Holland, Amsterdam, 1984, pp. 265–274. MR 761386, DOI 10.1016/S0304-0208(08)71480-4
- Luiza A. Moraes, A Hahn-Banach extension theorem for some holomorphic functions, Complex analysis, functional analysis and approximation theory (Campinas, 1984) North-Holland Math. Stud., vol. 125, North-Holland, Amsterdam, 1986, pp. 205–220. MR 893417
- Luiza A. Moraes, Quotients of spaces of holomorphic functions on Banach spaces, Proc. Roy. Irish Acad. Sect. A 87 (1987), no. 2, 181–186. MR 941714
Bibliographic Information
- © Copyright 1993 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 118 (1993), 455-461
- MSC: Primary 46G20
- DOI: https://doi.org/10.1090/S0002-9939-1993-1139471-0
- MathSciNet review: 1139471