Convex real projective structures on closed surfaces are closed
HTML articles powered by AMS MathViewer
- by Suhyoung Choi and William M. Goldman
- Proc. Amer. Math. Soc. 118 (1993), 657-661
- DOI: https://doi.org/10.1090/S0002-9939-1993-1145415-8
- PDF | Request permission
Abstract:
The deformation space $\mathfrak {C}(\Sigma )$ of convex $\mathbb {R}{{\mathbf {P}}^2}$-structures on a closed surface $\Sigma$ with $\chi (\Sigma ) < 0$ is closed in the space $\operatorname {Hom} (\pi ,\operatorname {SL} (3,\mathbb {R}))/\operatorname {SL} (3,\mathbb {R})$ of equivalence classes of representations ${\pi _1}(\Sigma ) \to \operatorname {SL} (3,\mathbb {R})$. Using this fact, we prove Hitchin’s conjecture that the contractible "Teichmüller component" (Lie groups and Teichmüller space, preprint) of $\operatorname {Hom} (\pi ,\operatorname {SL} (3,\mathbb {R}))/\operatorname {SL} (3,\mathbb {R})$ precisely equals $\mathfrak {C}(\Sigma )$.References
- S. Choi, Real projective surfaces, Doctoral dissertation, Princeton Univ., 1988.
—, Compact $\mathbb {R}{{\mathbf {P}}^2}$-surfaces with convex boundary I: $\pi$-annuli and convexity (submitted).
- William M. Goldman, Characteristic classes and representations of discrete subgroups of Lie groups, Bull. Amer. Math. Soc. (N.S.) 6 (1982), no. 1, 91–94. MR 634439, DOI 10.1090/S0273-0979-1982-14974-6
- William M. Goldman, Topological components of spaces of representations, Invent. Math. 93 (1988), no. 3, 557–607. MR 952283, DOI 10.1007/BF01410200
- William M. Goldman, Convex real projective structures on compact surfaces, J. Differential Geom. 31 (1990), no. 3, 791–845. MR 1053346
- W. M. Goldman and J. J. Millson, Local rigidity of discrete groups acting on complex hyperbolic space, Invent. Math. 88 (1987), no. 3, 495–520. MR 884798, DOI 10.1007/BF01391829
- N. J. Hitchin, Lie groups and Teichmüller space, Topology 31 (1992), no. 3, 449–473. MR 1174252, DOI 10.1016/0040-9383(92)90044-I
- N. H. Kuiper, On convex locally-projective spaces, Convegno Internazionale di Geometria Differenziale, Italia, 1953, Edizioni Cremonese, Roma, 1954, pp. 200–213. MR 0063115
Bibliographic Information
- © Copyright 1993 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 118 (1993), 657-661
- MSC: Primary 57M50; Secondary 14P05, 53C15, 58D27
- DOI: https://doi.org/10.1090/S0002-9939-1993-1145415-8
- MathSciNet review: 1145415