The Radon transform of Boehmians
HTML articles powered by AMS MathViewer
- by Piotr Mikusiński and Ahmed Zayed
- Proc. Amer. Math. Soc. 118 (1993), 561-570
- DOI: https://doi.org/10.1090/S0002-9939-1993-1145949-6
- PDF | Request permission
Abstract:
The Radon transform, which enables one to reconstruct a function of $N$ variables from the knowledge of its integrals over all hyperplanes of dimension $N - 1$, has been extended to Schwartz distributions by several people including Gelfand, Graev, and Vilenkin, who extended it to tempered distributions. In this paper we extend the Radon transform to a space of Boehmians. Boehmians are defined as sequences of convolution quotients and include Schwartz distributions and regular Mikusiński operators. Our extension of the Radon transform includes generalized functions of infinite order with compact support. The technique used in this paper is based on algebraic properties of the Radon transform and its convolution structure rather than on their analytic properties. Our results do not contain nor are contained in those obtained by Gelfand et al.References
- Thomas K. Boehme, The support of Mikusiński operators, Trans. Amer. Math. Soc. 176 (1973), 319–334. MR 313727, DOI 10.1090/S0002-9947-1973-0313727-5
- Stanley R. Deans, The Radon transform and some of its applications, A Wiley-Interscience Publication, John Wiley & Sons, Inc., New York, 1983. MR 709591
- I. M. Gel’fand and G. E. Shilov, Generalized functions. Vol. I: Properties and operations, Academic Press, New York-London, 1964. Translated by Eugene Saletan. MR 0166596
- I. M. Gel′fand and G. E. Shilov, Generalized functions. Vol. 1, Academic Press [Harcourt Brace Jovanovich, Publishers], New York-London, 1964 [1977]. Properties and operations; Translated from the Russian by Eugene Saletan. MR 0435831
- Sigurdur Helgason, The Radon transform, 2nd ed., Progress in Mathematics, vol. 5, Birkhäuser Boston, Inc., Boston, MA, 1999. MR 1723736, DOI 10.1007/978-1-4757-1463-0
- Donald Ludwig, The Radon transform on euclidean space, Comm. Pure Appl. Math. 19 (1966), 49–81. MR 190652, DOI 10.1002/cpa.3160190207
- Jan Mikusiński, Operational calculus, International Series of Monographs on Pure and Applied Mathematics, Vol. 8, Pergamon Press, New York-London-Paris-Los Angeles; Państwowe Wydawnictwo Naukowe, Warsaw, 1959. MR 0105594
- Jan Mikusiński and Piotr Mikusiński, Quotients de suites et leurs applications dans l’analyse fonctionnelle, C. R. Acad. Sci. Paris Sér. I Math. 293 (1981), no. 9, 463–464 (French, with English summary). MR 646866
- Piotr Mikusiński, Convergence of Boehmians, Japan. J. Math. (N.S.) 9 (1983), no. 1, 159–179. MR 722539, DOI 10.4099/math1924.9.159
- P. Mikusiński, Boehmians and generalized functions, Acta Math. Hungar. 51 (1988), no. 3-4, 271–281. MR 956979, DOI 10.1007/BF01903334 J. Radon, Über die Bestimmung von Funktionen durch ihre Integralwärte längs gewisser Manningfaltigkeiten, Ber. Verh. Sächs. Akad. 69 (1917), 262-277.
- Walter Rudin, Real and complex analysis, 2nd ed., McGraw-Hill Series in Higher Mathematics, McGraw-Hill Book Co., New York-Düsseldorf-Johannesburg, 1974. MR 0344043 L. Schwartz, Théorie des distributions, Hermann, Paris, 1950-1951.
- A. H. Zemanian, Generalized integral transformations, 2nd ed., Dover Publications, Inc., New York, 1987. MR 896486
Bibliographic Information
- © Copyright 1993 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 118 (1993), 561-570
- MSC: Primary 44A12; Secondary 46F12
- DOI: https://doi.org/10.1090/S0002-9939-1993-1145949-6
- MathSciNet review: 1145949