On Burkholder’s biconvex-function characterization of Hilbert spaces
HTML articles powered by AMS MathViewer
- by Jinsik Mok Lee
- Proc. Amer. Math. Soc. 118 (1993), 555-559
- DOI: https://doi.org/10.1090/S0002-9939-1993-1159174-6
- PDF | Request permission
Abstract:
Suppose that ${\mathbf {X}}$ is a real or complex Banach space with norm $| \cdot |$. Then ${\mathbf {X}}$ is a Hilbert space if and only if \[ E|x + Y| \geqslant 1\] for all $x \in {\mathbf {X}}$ and all ${\mathbf {X}}$-valued Bochner integrable functions $Y$ on the Lebesgue unit interval satisfying $EY = 0$ and $|Y| \geqslant 1$ a.e. This leads to a simple proof of the biconvex-function characterization due to Burkholder.References
- Dan Amir, Characterizations of inner product spaces, Operator Theory: Advances and Applications, vol. 20, Birkhäuser Verlag, Basel, 1986. MR 897527, DOI 10.1007/978-3-0348-5487-0
- J. Bourgain, Some remarks on Banach spaces in which martingale difference sequences are unconditional, Ark. Mat. 21 (1983), no. 2, 163–168. MR 727340, DOI 10.1007/BF02384306
- D. L. Burkholder, A geometrical characterization of Banach spaces in which martingale difference sequences are unconditional, Ann. Probab. 9 (1981), no. 6, 997–1011. MR 632972, DOI 10.1214/aop/1176994270
- D. L. Burkholder, Martingale transforms and the geometry of Banach spaces, Probability in Banach spaces, III (Medford, Mass., 1980) Lecture Notes in Math., vol. 860, Springer, Berlin-New York, 1981, pp. 35–50. MR 647954
- D. L. Burkholder, A geometric condition that implies the existence of certain singular integrals of Banach-space-valued functions, Conference on harmonic analysis in honor of Antoni Zygmund, Vol. I, II (Chicago, Ill., 1981) Wadsworth Math. Ser., Wadsworth, Belmont, CA, 1983, pp. 270–286. MR 730072
- Donald L. Burkholder, Martingales and Fourier analysis in Banach spaces, Probability and analysis (Varenna, 1985) Lecture Notes in Math., vol. 1206, Springer, Berlin, 1986, pp. 61–108. MR 864712, DOI 10.1007/BFb0076300
- J. Diestel and J. J. Uhl Jr., Vector measures, Mathematical Surveys, No. 15, American Mathematical Society, Providence, R.I., 1977. With a foreword by B. J. Pettis. MR 0453964, DOI 10.1090/surv/015 V. I. Istrǎţescu, Inner product structures, Reidel, Boston, MA, 1987.
- Terry R. McConnell, On Fourier multiplier transformations of Banach-valued functions, Trans. Amer. Math. Soc. 285 (1984), no. 2, 739–757. MR 752501, DOI 10.1090/S0002-9947-1984-0752501-X
Bibliographic Information
- © Copyright 1993 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 118 (1993), 555-559
- MSC: Primary 46C15; Secondary 46B20, 46E40
- DOI: https://doi.org/10.1090/S0002-9939-1993-1159174-6
- MathSciNet review: 1159174