A REMARK ON CURVES COVERED BY COVERINGS

MARC COPPENS

(Communicated by Louis J. Ratliff, Jr.)

ABSTRACT. Let \(f : C' \rightarrow C \) be a covering between two smooth irreducible projective curves. Let \(p \) be a prime number. If \(C' \) is a covering of degree \(p \) of a curve of genus \(h \) and if \(g(C) \geq \left(\frac{p}{2} \right)(h+3)+h+3-2p \), then \(C \) is a covering of degree \(p \) of a curve of genus at most \(h \).

Let \(C \) be a smooth irreducible projective curve of genus \(g \) defined over \(\mathbb{C} \).

Definition. We say that \(C \) is of type \((d; h)\) if there exists a covering \(\pi : C \rightarrow E \) with \(\deg(\pi) = d \) and \(g(E) \leq h \).

Statement \(S(d; h; g) \). If \(f: C' \rightarrow C \) is a morphism with \(g(C) = g \) and if \(C' \) is of type \((d; h)\), then \(C \) is of type \((d; h)\).

Statement \(S(d; h; g) \) is proved for the cases \(d = 2 \) (see [1, 2]), \(d = 3 \) (see [1]), and \(d = 4, \ g \neq 7 \) (see [1]). For \(h = 0 \) it is almost trivial (see, e.g., [4]).

In this paper we prove

Theorem. Let \(p \) be a prime number. Statement \(S(p; h; g) \) holds for \(g \geq \left(\frac{p}{2} \right)(h+3)+h+3-2p \).

Remarks (from the referee). (1) There is an important difference between Statement \(S(d; h; g) \) in this paper and in [1]. As a matter of fact, in [1] a curve \(C \) is said to be of type \((d; h)\) if \(\deg(\pi) \leq d \) (inequality instead of equality).

(2) The referee informed me about D. Abramovich's Ph.D. Thesis, Subvarieties of Abelian varieties and of jacobians of curves, of which Abramovich sent me a copy. Amongst a lot of other interesting results, it contains again results concerning the topic studied in this paper. Also, from a letter, it is clear to me that he knows our theorem already.

If \(d \) is not a prime number then the situation is more complicated. Assume \(d = n = an' \) for some \(a, n' \in \mathbb{Z}_{\geq 2} \) and assume there exists a diagram

\[
\begin{array}{ccc}
C_1' & \longrightarrow & C_1 \\
\downarrow \pi_1 & & \\
E & \end{array}
\]

Received by the editors August 20, 1991 and, in revised form, October 28, 1991.

1991 Mathematics Subject Classification. Primary 14H45; Secondary 14H55.

The author is affiliated with the University at Leuven (Celestijnenlaan 200B B 3030 Leuven Belgium) as a research fellow.

©1993 American Mathematical Society
0002-9939/93 $1.00 + $.25 per page
with \(\deg(\pi_1) = n' \), \(g(E) = h \), and \(g(C_1) = g_1 \) such that \(C_1 \) is not of type \((n''; h)\) for some \(n'' < n' \). Take a covering \(\tau: C \to C_1 \) of degree \(a \). Assume there exists a covering \(\mu: C \to E_1 \) with \(\deg(\mu) \leq n \) and \(g(E_1) \leq h \). Consider \((\tau; \mu): C \to C_1 \times E_1\), and let \(C'' \) be the normalization of the image of \((\tau; \mu)\). One obtains a diagram of coverings

\[
\begin{array}{ccc}
 C & \xrightarrow{\nu} & C'' \\
 \tau \downarrow & & \gamma \downarrow \\
 C_1 & \xrightarrow{\mu} & E_1
\end{array}
\]

It is well known (see, e.g., [3, §1, (iii)]) that \(g(C'') \leq (a-1)(n-1) + ag_1 + nh \). So if we take \(g(C) \) large enough then \(\nu \) is nontrivial. Also \(\gamma \) is nontrivial, otherwise \(\varepsilon \) gives us that \(C_1 \) is of type \((n''; h)\) for some \(n'' < n' \). Choosing suited ramification in the covering \(\tau \) (e.g., a fibre of type \((a-1)Q_1 + Q_2\) suffices), this becomes impossible. Let \(\widetilde{C'} \) be the normalization of an irreducible component of \(C_1^{'} \times C_1 C \). Taking a covering \(C' \to \widetilde{C'} \) if necessary, we obtain the following situation

\[
\begin{array}{ccc}
 C' \xrightarrow{\pi} C \\
 \downarrow & & \\
 E
\end{array}
\]

with \(\deg(\pi) = n \), \(g(E) \leq h \), but \(C \) is not of type \((n; h)\). Moreover, we can take \(g(C) \) arbitrarily large.

In [1] Abramovich and Harris prove the existence of a diagram

\[
\begin{array}{ccc}
 C_1^{'} \xrightarrow{\pi} C_1 \\
 \downarrow & & \\
 E
\end{array}
\]

with \(g(C_1) = 5 \), \(\deg(\pi) = 3 \), \(g(E) = 2 \), and \(C_1 \) is not of type \((n''; 2)\) for \(n'' = 2 \) or 3. Hence for each \(a \in \mathbb{Z}_{\geq 2} \) there exists no \(g_0 \) such that \(S(3a; 2; g) \) holds for \(g \geq g_0 \).

Proof of the theorem. Consider the situation

\[
\begin{array}{ccc}
 C' \xrightarrow{f} C \\
 \downarrow & & \\
 E
\end{array}
\]

with \(\deg(\pi) = p \), \(g(E) = h \), and \(g(C) = g \geq (\text{deg}(\mathcal{L}))(h+3) + h + 3 - 2p \). For \(n \in \mathbb{Z}_{\geq 2} \), \(D \in E^{(h+n)} \), and \(P \in E \) general, the linear systems \(|D - P| \) and \(|D| \) on \(E \) are without fixed points. Using the fact that \(f_* \) preserves linear equivalence (see [4]) also \(L := |f_* \mathcal{L}| \) and \(|L - f_* \pi^*(P)| = |f_* \pi^*(D - P)| \) have no fixed points on \(C \). In particular,

\[
(*) \quad \dim(L) \geq \dim(|L - f_* \pi^*(P)|) + 1.
\]
Assume we have equality in (*). Let \(\phi: C \to \mathbb{P}^r \) be the morphism associated to \(L \), let \(C_1 \) be the normalization of \(\phi(C) \), and let \(\rho: C \to C_1 \) be the induced covering. Equality in (*) implies that \(\deg(\rho) = p \) and for each \(P \in E \) the divisor \(f_*\pi^*(P) \) is a fibre of \(\rho \). It follows that the morphism \((\pi; \rho \circ f): C' \to E \times C_1 \) factors through \(E \). Hence \(E \) dominates \(C_1 \), so \(g(C_1) \leq h \). This implies that \(C \) is of type \((p; h) \).

So now, assume we have

\[
\dim(L) \geq \dim(|L - f_*\pi^*(P)|) + 2.
\]

Because \(\deg(\rho) < p \) now, we have that \(\rho \) is an isomorphism (here we use that \(p \) is a prime number). If \(p = 2 \) then for \(D \in E^{(h+1)} \) general one finds that

\[
\dim(|f_*\pi^*(D) + f_*\pi^*(P)|) \geq \dim(|f_*\pi^*(D)|) + \deg(f_*\pi^*(P)).
\]

This implies that \(|f_*\pi^*(D)| \) is nonspecial, hence \(1 \leq 2h+2-g \), i.e., \(g \leq 2h+1 \). Since \(g > 2h+1 \), we obtain a contradiction. For \(p \neq 2 \) we are going to use Castelnuovo theory in order to obtain a similar situation. The use of Castelnuovo theory is inspired by §3 in [1].

Take \(D_1 \in E^{(h+2)} \) general and \(D_2 \in E^{(h+n)} \) \((n \geq 2)\) general. Take \(P \in E \) general and write \(f_*\pi^*(P) = P_1 + P_2 + \cdots + P_p \). Since \(L_i = |f_*\pi^*(D_i)| \) is simple, we obtain that there exists \(E_i \in L_i \) with \(\text{cd}(E_i; f_*\pi^*(P)) = P_1 \). (For two effective divisors \(E_1 \) and \(E_2 \) on \(C \), one has \(E_0 = \text{cd}(E_1; E_2) \) if \(E_i \geq E_0 \) and \(\text{Supp}(E_1 - E_0) \cap \text{Supp}(E_2 - E_0) = \emptyset \).) Consider \(|E_1 + E_2 + P_3 + \cdots + P_p| \supset (|E_1 + E_2| + P_3 + \cdots + P_p) \cup (|E_1 + P_2 + \cdots + P_p| + (E_2 - P_2)) \). Also \(|E_1 + P_2 + \cdots + P_p| = |f_*\pi^*(D_1 + P) - P| \) has no fixed points, so \(|E_1 + E_2 + P_3 + \cdots + P_p| \) has no fixed points. Also \(|E_1 + E_2 + P_3 + \cdots + P_p| \supset |E_2 + P_1 + \cdots + P_p| + (E_1 - P_1) \), hence \(|E_1 + E_2 + P_3 + \cdots + P_p| \) has no fixed points. Finally \(|E_1 + E_2 + P_1 + \cdots + P_p| = |f_*\pi^*(D_1 + D_2 + P)| \) has no fixed points. This implies, for \(D \in E^{(2h+4+n)} \) \((n \geq 0)\) and \(P \in E \) general, that one has

\[
\dim|f_*\pi^*(D + P)| \geq \dim|f_*\pi^*(D)| + 3;
\]

there exist \(E_i \in |f_*\pi^*(D + P)| \) for \(i = 1, 2 \)

with \(\text{cd}(E_1; f_*\pi^*(P)) = P_1, \text{cd}(E_2; f_*\pi^*(P)) = P_1 + P_2 \).

Assume \(p > 3 \). Take \(D_1 \in E^{(2h+5)} \) general, \(D_2 \in E^{(h+2)} \) general, and \(P \in E \) general, and write \(f_*\pi^*(P) = P_1 + \cdots + P_p \). Take \(E_1, E_2 \in |f_*\pi^*(D_1)| \) with \(\text{cd}(E_1; f_*\pi^*(P)) = P_1, \text{cd}(E_2; f_*\pi^*(P)) = P_1 + P_2 \), and take \(E_3 \in |f_*\pi^*(D_2)| \) with \(\text{cd}(E_3; f_*\pi^*(P)) = P_3 \). As before, for \(D \in E^{(3h+7)} \) and \(P \in E \) general, one has

\[
\dim|f_*\pi^*(D + P)| \geq \dim|f_*\pi^*(D)| + 4;
\]

there exist \(E_i \in |f_*\pi^*(D + P)| \) for \(i = 1, 2, 3 \)

with \(\text{cd}(E_i; f_*\pi^*(P)) = P_1 + \cdots + P_i \).

Continuing in this way, one finds for \(D \in E^{((p-1)(h+3)-2)} \) and \(P \in E \) general that

\[
\dim|f_*\pi^*(D + P)| \geq \dim|f_*\pi^*(D)| + p.
\]

This is only possible if \(|f_*\pi^*(D)| \) is nonspecial on \(C \). But \(\deg(f_*\pi^*(D)) = p(p-1)(h+3) - 2p \) and \(\dim(|f_*\pi^*(D)|) \geq 1 + 2(h+3) + 3(h+3) + \cdots + (p-1)(h+3) + (p-1)h - 2 \). So \((p-1)(h+3) - h - 2 \leq p(p-1)(h+3) - 2p - g \), hence \(g \leq (p-1)(h+3) - 2p + h + 2 \). This gives us a contradiction.
Remark. Using the arguments of [1], the situation is related to the existence of an abelian variety A of dimension h contained in $C^{(p^h)}$. Then Theorem 2 in [1] gives us a bound of order p^2h^2, which is worse than ours.

REFERENCES