SIMPLICITY OF CROSSED PRODUCTS OF C^*-ALGEBRAS

SUN YOUNG JANG AND SA GE LEE

(Communicated by Palle E. T. Jorgensen)

ABSTRACT. Let (A, G, α) be a C^*-dynamical system and let G be a discrete group. When G is a central shift in (A, G, α), we show that A is G-simple (resp. G-prime) if and only if the C^*-crossed product $A \times_\alpha G$ is simple (resp. prime).

1. Introduction

Let (A, G, α) be a C^*-dynamical system. Our aim is to continue the investigation of the relationship between the property of the C^*-dynamical system (A, G, α) and the ideal structure of the corresponding C^*-crossed product $A \times_\alpha G$. This problem first appeared in [6] and has been studied in [2, 3, 4, etc.]. Olesen and Pedersen [7] gave the necessary and sufficient condition of simplicity of C^*-crossed products by locally compact abelian groups. When G is a discrete group and A is an AF-algebra, Elliott [2] showed that if α is properly outer and A is G-simple then the reduced product $A \times_{\alpha_r} G$ is simple. Later, Kawamura and Tomiyama [3] obtained the same result when A is an abelian C^*-algebra. In this paper we study simplicity of the C^*-crossed product $A \times_\alpha G$ for a general C^*-algebra when G is a discrete group.

Let (A, G, α) be a C^*-dynamical system and G be a discrete group. Let A'' be the enveloping von Neumann algebra of a C^*-algebra A. Then the action $\alpha: g \mapsto \alpha_g$ induces the action $\alpha'': g \mapsto \alpha''_g$ on A''. Then (A'', G, α'') becomes a W^*-dynamical system. It is said that G is a central shift in (A, G, α) if there exists a central projection p in A'' such that $\sum_{g \in G} \alpha''_g(p) = 1$ and $\alpha''_g(p)p = 0$ for every $g \neq e$ in G, where e is the identity of G (see [1]). When G is a central shift in (A, G, α), we show that A is G-simple if and only if the C^*-crossed product $A \times_\alpha G$ is simple.

2. Main result

Let (M, G, α) be a W^*-dynamical system and $M \subset B(H)$ for a Hilbert space H. The W^*-crossed product $M \times_\alpha G$ is the von Neumann algebra on...
generated by \(\{\pi_\alpha(x), \lambda_g | x \in M, g \in G\} \), where
\[
\begin{align*}
(\pi_\alpha(x)\xi)(s) &= \alpha_{s^{-1}}(x)\xi(s), \\
(\lambda_g \xi)(s) &= \xi(g^{-1}s)
\end{align*}
\]
for every \(x \in M, s, g \in G \), and \(\xi \) in \(L^2(G, H) \).

Lemma 1. Let \((A, G, \alpha)\) be a \(C^* \)-dynamical system. Let \(I \) be an \(\alpha \)-invariant norm closed two-sided ideal of \(A \). Then \(I \times_\alpha G \) is a norm closed two-sided ideal of \(A \times_\alpha G \).

Proof. Let \((\pi \times \lambda)\) be the universal representation of \(A \times_\alpha G \) induced by some covariant representation \((\pi, \lambda, H)\) of the \(C^* \)-dynamical system \((A, G, \alpha)\), and let \((A \times_\alpha G)^{''}\) be the enveloping von Neumann algebra of \(A \times_\alpha G \). Let \(I \) be an \(\alpha \)-invariant norm closed two-sided ideal of \(A \). Let \(p \) be a projection in the center of \(\overline{\pi(A)}^{\sigma w} \) such that
\[
\overline{\pi(I)}^{\sigma w} = \overline{\pi(A)}^{\sigma w} p
\]
where \(\overline{()^{\sigma w}} \) means the \(\sigma \)-weak closure of \(() \). It is clear that \(p \) is contained in \((A \times_\alpha G)^{''}\). Since \(I \) is \(\alpha \)-invariant, we have that \(\lambda_g p \lambda_g^* = p \) for every \(g \) in \(G \). Then we put for every \(f \) in \(L^1(G) \)
\[
\lambda_f = \int_G f(g) \lambda_g \, dg
\]
where \(dg \) is the Haar measure on \(G \). For \(x \) in \(A \) and \(f \) in \(L^1(G) \) we obtain
\[
\pi(x)\lambda_f p = \pi(x)p\lambda_f = p\pi(x)\lambda_f.
\]
Since \((A \times_\alpha G)^{''}\) is generated by \(\{\pi(x)\lambda_f | x \in A, f \in L^1(G)\} \), \(p \) is contained in the center of \((A \times_\alpha G)^{''}\). Also, since \((I \times_\alpha G)^{''}\) is generated by \(\{\pi(x)\lambda_f | x \in I, f \in L^1(G)\} \), we get
\[
(\pi \times \lambda)(A \times_\alpha G)^{''} p = (A \times_\alpha G)^{''} = (I \times_\alpha G)^{''}.
\]
It follows that \(I \times_\alpha G \) is a norm closed two-sided ideal of \(A \times_\alpha G \).

Theorem 2. Let \((A, G, \alpha)\) be a \(C^* \)-dynamical system and let \(G \) be a discrete group. Let \(G \) be a central shift in \((A, G, \alpha)\). Then \(A \) is \(G \)-simple if and only if the \(C^* \)-crossed product \(A \times_\alpha G \) is simple.

Proof. First suppose that \(A \) is \(G \)-simple. Let \(A'' \) be the enveloping von Neumann algebra of \(A \), and let \((A'', G, \alpha'')\) be the \(W^* \)-dynamical system induced by the \(C^* \)-dynamical system \((A, G, \alpha)\). Since \(G \) is a central shift in \((A, G, \alpha)\), by [1] there exists an *-isomorphism \(\phi \) from the enveloping von Neumann algebra \((A \times_\alpha G)^{''}\) of \(A \times_\alpha G \) onto the \(W^* \)-crossed product \(A'' \times_{\alpha''} G \). Let \(J \) be a nonzero norm closed two-sided ideal of \(A \times_\alpha G \). There exists a projection \(p_0 \) in the center of \((A \times_\alpha G)^{''}\) such that
\[
\overline{J}^{\sigma w} = (A \times_\alpha G)^{''} p_0
\]
where \(\overline{J}^{\sigma w} \) denotes the \(\sigma \)-weak closure of \(J \). Then we have
\[
\phi(\overline{J}^{\sigma w}) = (A'' \times_{\alpha''} G)\phi(p_0).
\]
Since \(\phi(p_0) \) is contained in the center of \(A'' \times_{\alpha''} G \) and \(\alpha'' \) acts centrally freely, there exists a projection \(q_0 \) in the center of \(A'' \) such that \(\phi(p_0) = \pi_\alpha(q_0) \). Let
W_s be an operator on $l^2(G, H)$ to H such that $W_s\xi = \xi(s^{-1})$ for each s in G and ξ in $l^2(G, H)$. Put for every x in $B(l^2(G, H))$, $E(x) = W_x W_e^*$ where e is the identity of G. We also denote the restriction of E to $A'' \times_{\alpha''} G$ by E. Then $E: A'' \times_{\alpha''} G \to A''$ is a faithful normal positive linear map. Let $\{p_i\}_{i \in I}$ be an approximate unit of J. Then p_0 is the least upper bound of $\{p_i\}$. Since p_i exists in J for every i in I, $E(\phi(p_i))$ is contained in A for every i in I. Since $\phi(p_i) \leq \phi(p_0)$ for every i in I, we get for every i in I
$$E(\phi(p_i))q_0 = E(\phi(p_i)\pi_\alpha(q_0)) = E(\phi(p_i)\phi(p_0)) = E(\phi(p_i)).$$
Thus we have for every i in I
$$\pi_\alpha(E(\phi(p_i))) = \pi_\alpha(E(\phi(p_i)))\phi(p_0).$$
Therefore $\pi_\alpha(E(\phi(p_i)))$ is contained in $\phi(J) \cap \pi_\alpha(A)$ for every i in I. Since A is G-simple, $\phi(J) \cap \pi_\alpha(A)$ is $\{0\}$ or $\pi_\alpha(A)$. Since J is nonzero,
$$\phi(J) \cap \pi_\alpha(A) = \pi_\alpha(A).$$
So we have $J = A \times_\alpha G$. The converse is an immediate consequence of Lemma 1.

Corollary 3. Let G be a discrete group and let (A, G, α) be a C*-dynamical system in which G is a central shift. Then A is G-simple if and only if the reduced crossed product $A \times_{\alpha} G$ is simple.

Proof. Let J be a nonzero norm closed two-sided ideal of the reduced crossed product $A \times_{\alpha} G$. There exists a projection p in the center of the W^*-crossed product $A'' \times_{\alpha''} G$ such that
$$\overline{J}^{\sigma_w} = (A'' \times_{\alpha''} G)p$$
where \overline{J}^{σ_w} denotes the σ-weak closure of J. We then proceed with the remaining part of this proof in the similar manner as the proof of Theorem 2.

Corollary 4. Let (A, G, α) be a C*-dynamical system and let G be a discrete group. Assume that G is a central shift in (A, G, α). Then A is G-prime if and only if the C*-crossed product $A \times_{\alpha} G$ is prime.

Proof. Let I_1 and I_2 be nonzero α-invariant closed two-sided ideals of A. Since $A \times_{\alpha} G$ is prime, $(I_1 \times_{\alpha} G) \cap (I_2 \times_{\alpha} G)$ is a nonzero two-sided ideal of $A \times_{\alpha} G$. Since G is discrete, there exists a conditional expectation $P: l^1(G, A) \to A$ defined by $P(x) = x(e)$ for all x in $l^1(G, A)$, where e is the identity of G. Then P can be extended to a conditional expectation of $A \times_{\alpha} G$ onto A. If we consider the restriction of P to $I_k \times_{\alpha} G$ for each $k = 1$ and 2, then $P(x^*x)$ is a nonzero element in $I_1 \cap I_2$ for every nonzero element x in $(I_1 \times_{\alpha} G) \cap (I_2 \times_{\alpha} G)$. Thus $I_1 \cap I_2 \neq \{0\}$.

The converse can be proved by imitating the proof of Theorem 2.

Under the same hypothesis of Corollary 4 we can also show that A is G-prime if and only if the reduced crossed product $A \times_{\alpha} G$ is prime.

Remark 5. Let (A, G, α) be a C*-dynamical system and let G be a discrete group. If G is a central shift in (A, G, α) then α is properly outer. For abelian C*-algebras [3] and AF-algebras [2], it was shown that if α is properly outer then G-simplicity of A implies simplicity of $A \times_{\alpha} G$. It would be nice if we can extend this statement for more general C*-algebras.
References

