An Engel condition with derivation
HTML articles powered by AMS MathViewer
- by Charles Lanski
- Proc. Amer. Math. Soc. 118 (1993), 731-734
- DOI: https://doi.org/10.1090/S0002-9939-1993-1132851-9
- PDF | Request permission
Abstract:
Let $R$ be a prime ring, $L$ a noncommutative Lie ideal of $R$, and $D$ a nonzero derivation of $R$. If for each $x \in L$, ${[D(x),x]_k} = [[ \cdots [D(x),x],x], \ldots ,x] = 0$ with $k$ fixed, then $\operatorname {char} (R) = 2$ and $R \subseteq {M_2}(F)$ for $F$ a field.References
- Chen-Lian Chuang, $*$-differential identities of prime rings with involution, Trans. Amer. Math. Soc. 316 (1989), no. 1, 251–279. MR 937242, DOI 10.1090/S0002-9947-1989-0937242-2
- Chen-Lian Chuang and Jer-Shyong Lin, On a conjecture by Herstein, J. Algebra 126 (1989), no. 1, 119–138. MR 1023288, DOI 10.1016/0021-8693(89)90322-0
- I. N. Herstein, Topics in ring theory, University of Chicago Press, Chicago, Ill.-London, 1969. MR 0271135
- Nathan Jacobson, $\textrm {PI}$-algebras, Lecture Notes in Mathematics, Vol. 441, Springer-Verlag, Berlin-New York, 1975. An introduction. MR 0369421
- V. K. Harčenko, Differential identities of prime rings, Algebra i Logika 17 (1978), no. 2, 220–238, 242–243 (Russian). MR 541758
- Charles Lanski, Differential identities in prime rings with involution, Trans. Amer. Math. Soc. 291 (1985), no. 2, 765–787. MR 800262, DOI 10.1090/S0002-9947-1985-0800262-9
- Charles Lanski, Differential identities, Lie ideals, and Posner’s theorems, Pacific J. Math. 134 (1988), no. 2, 275–297. MR 961236
- Wallace S. Martindale III, Prime rings satisfying a generalized polynomial identity, J. Algebra 12 (1969), 576–584. MR 238897, DOI 10.1016/0021-8693(69)90029-5
- Donald S. Passman, Infinite crossed products, Pure and Applied Mathematics, vol. 135, Academic Press, Inc., Boston, MA, 1989. MR 979094
- Edward C. Posner, Derivations in prime rings, Proc. Amer. Math. Soc. 8 (1957), 1093–1100. MR 95863, DOI 10.1090/S0002-9939-1957-0095863-0
- Louis Halle Rowen, Polynomial identities in ring theory, Pure and Applied Mathematics, vol. 84, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York-London, 1980. MR 576061
- J. Vukman, Commuting and centralizing mappings in prime rings, Proc. Amer. Math. Soc. 109 (1990), no. 1, 47–52. MR 1007517, DOI 10.1090/S0002-9939-1990-1007517-3
Bibliographic Information
- © Copyright 1993 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 118 (1993), 731-734
- MSC: Primary 16W25; Secondary 16N60
- DOI: https://doi.org/10.1090/S0002-9939-1993-1132851-9
- MathSciNet review: 1132851