SHORE POINTS AND DENDRITES

VICTOR NEUMANN-LARA AND ISABEL PUGA-ESPINOSA

(Communicated by Franklin D. Tall)

Abstract. A point \(x \) in a dendroid \(X \) is called a shore point if there is a sequence of subdendroids of \(X \) not containing \(x \) and converging to \(X \) in the Hausdorff metric. We give necessary and sufficient conditions for a dendroid to be a dendrite, in terms of shore points and Kelley's property.

INTRODUCTION

A dendroid is an arcwise connected, hereditarily unicoherent metric continuum. A locally connected dendroid is called a dendrite. It is well known that every pair of points \(u \) and \(w \) in a dendroid are joined by a unique arc \([u, w]\) and that the subcontinua of a dendroid are themselves dendroids. If \(X \) is a dendroid and \(x \in X \), then \(x \) is an end point of \(X \) if it is an end point of every arc containing it, and \(x \) is a shore point of \(X \) if there exists a sequence \(\{X_n\} \) of subdendroids of \(X \) not containing \(x \) such that \(\lim X_n = X \).

It is not difficult to prove that every end point is a shore point. The shore points of \(X \) that are not end points will be called the improper shore points of \(X \). The following example shows that a dendroid without improper shore points is not necessarily a dendrite: Let \(X \subseteq \mathbb{R}^2 \) be the union of the rectilinear segments \([(0,0), (1,1/n)] \), \(n = 1, 2, 3, \ldots \) and \([(0,0), (2,0)] \).

A dendroid will be called neat whenever each one of its subdendroids has no improper shore points. Obviously every subdendroid of a neat dendroid is neat.

In Theorem 2.1 we give necessary and sufficient conditions for a dendroid \(X \) to be a dendrite in terms of shore points and Kelley's property. In particular, it is proved that \(X \) is neat iff \(X \) is a dendrite.

1. Preliminaries

A dendroid \(X \) is smooth at \(p \) if \([p, a_n]\) converges to \([p, a]\) in the Hausdorff metric, provided \(a_n \) converges to \(a \) in \(X \) (see [2]). A continuum \(X \) has Kelley's property if for every \(\varepsilon > 0 \) there exists a \(\delta > 0 \) such that for every pair of points \(a \) and \(b \) in \(X \) whose distance is less than \(\delta \) and each subcontinuum
A of X containing a, there is a subcontinuum B of X containing b whose Hausdorff distance from A is less than \(\varepsilon \) [4]. Recently, Czuba [1] has proved the following result:

1.1. **Theorem** (Czuba). If a dendroid has Kelley's property then it is smooth.

For general terminology we refer the reader to [4, 6]. A weaker version of the following lemma was proved in [5]. The proof is not difficult and is actually identical to the previous one.

1.2. **Lemma.** If \(U \) is an arcwise connected subset of a dendroid X then \(\text{Cl}(U) \) is the limit of a sequence of subdendroids of X contained in \(U \).

1.3. **Lemma.** Let X be a dendroid that has Kelley's property. Then for every \(p \in X \) and every arc-component \(U \) of \(X\{p\} \), either \(U \) is open or \(\text{Int}(U) = \emptyset \).

Proof. Suppose that \(\text{Int}(U) \neq \emptyset \) and let \(v \in \text{Int}(U) \). If \(u \in U \setminus \text{Int}(U) \) then the arc \([u, v] \subseteq U \). Let \(0 < \varepsilon < \min\{d(p, [v, u]), \alpha\} \) where d denotes the distance in X and the ball of radius \(\alpha \) centered at \(v \) is contained in \(\text{Int}(U) \). For each \(\delta > 0 \), there exists \(w \notin U \) such that \(d(w, u) < \delta \).

Let \(K \) be a subcontinuum of X containing \(w \): If \(p \notin K \) then \(K \) is contained in an arc-component of \(X\{p\} \) different from \(U \), so that \(d(v, K) \geq \alpha > \varepsilon \), which implies \(D(K, [u, v]) > \varepsilon \), where \(D \) denotes the distance in the Hausdorff metric. If \(p \in K \) then \(d(p, [v, u]) > \varepsilon \) and again \(D(K, [v, u]) > \varepsilon \). Therefore, Kelley's property is not satisfied. \(\square \)

1.4. **Lemma.** A shore point in a dendroid X is not a cut point of X.

Proof. Suppose that for some \(q \in X \), \(X\{q\} = H \cup K \) is a decomposition of \(X\{q\} \) into disjoint, relatively closed sets \(H \) and \(K \) and, let \(\varepsilon = D(H, K) \). If for a subcontinuum \(A \) of X, \(D(A, X) < \varepsilon \), then the sets \(A \cap H \) and \(A \cap K \) are nonempty, so that \(q \in A \). Therefore, \(q \) is not a shore point of X. \(\square \)

2. **Main result**

2.1. **Theorem.** For a dendroid X, the following conditions are equivalent:

(i) \(X \) is neat.

(ii) For every \(q \in X \), the arc components of \(X\{q\} \) are all open.

(iii) \(X \) is a dendrite.

(iv) \(X \) has Kelley's property and has no improper shore points.

(v) Every subcontinuum of X has Kelley's property.

Proof. (i) \(\Rightarrow \) (ii). Suppose that an arc component \(\alpha \) of \(X\{q\} \) is not open. If for some arc component \(\beta \) of \(X\{q\} \) different from \(\alpha \), \(\text{Cl}(\beta) \cap \alpha \neq \emptyset \), we take \(x \in \text{Cl}(\beta) \cap \alpha \) and note that the arc \((q, x] \subseteq \text{Cl}(\beta) \cap \alpha \). If \(y \in (q, x) \), then \(y \in \text{Cl}(\beta \setminus \alpha) \), so that there exists a sequence \(\{X_n\} \) of subdendroids contained in \(\beta \) such that \(X_n \to \text{Cl}(\beta) \) (Lemma 1.2). Clearly \(y \) is an improper shore point of the subdendroid \(\text{Cl}(\beta) \). Let \(\Gamma \) be the set of arc components of \(X\{q\} \) different from \(\alpha \). We suppose now that \(\text{Cl}(\beta) \cap \alpha = \emptyset \) for every \(\beta \in \Gamma \) and denote by \(B \) the union of the members of \(\Gamma \). By assumption \(\text{Cl}(B) \cap \alpha \neq \emptyset \), take \(x \in \text{Cl}(B) \cap \alpha \) and \(y \in (q, x) \). Notice that \(y \in \text{Cl}(B \setminus \alpha) \). Let \(\{y_n\} \) be a sequence of points such that \(y_n \in B \setminus \alpha \) and \(\{y_n\} \) converges to \(y \) in \(\text{Cl}(B) \setminus \alpha \). We can assume that \(\beta_n \neq \beta_m \) for \(m \neq n \). The sequence of dendroids \(M_n = \bigcup_{j=1}^{n} \text{Cl}(\beta_j) \) is increasing and satisfies \(M_n \cap \alpha = \emptyset \).
for each \(n \). Moreover, \(\{M_n\} \) converges to a subdendroid \(Y \subseteq \text{Cl}(B) \) and hence \(y \) is an improper shore point of \(Y \).

(ii) \(\Rightarrow \) (i). Suppose that \(X \) is not neat. Let \(X_0 \) be a subdendroid of \(X \) and \(q \) an improper shore point of \(X_0 \). Then \(X_0 \setminus \{q\} \) has at least two arc components.

We shall prove that every arc component \(\alpha \) of \(X_0 \setminus \{q\} \) is open in \(X_0 \setminus \{q\} \). Since this fact contradicts the connectivity of \(X_0 \setminus \{q\} \), our assertion follows from 1.4. Indeed if \(C(\alpha) \) is the arc component in \(X \setminus \{q\} \) containing \(\alpha \), then \(C(\alpha) \cap (X_0 \setminus \{q\}) = \alpha \).

(i) \(\Rightarrow \) (iii). It was proved by Charatonik and Eberhart [2, Corollaries 4 and 5] that a dendroid \(X \) is a dendrite iff \(X \) is smooth at each of its points. Suppose that \(X \) is not smooth at \(q \), and let \(\{x_n\} \) be a sequence that converges to \(x \) such that \([q, x_n]\) is convergent but \(L = \lim_{n \to \infty} [q, x_n] \neq [q, x] \). Let \(z \in L \setminus [q, x] \) be a point that is not an end point of \(L \). If \(z \notin [q, x_n] \) for an infinite set \(J \) of indices, it will be clear that \(z \) is an improper shore point of \(X \setminus \{q, x, \alpha(\{q, x\}) \} \).

Therefore we can assume that \(z \in [q, x_n] \) for all \(n \). In \(X \setminus \{z\} \), the arcs \([q, z] \) and \([x_n, z] \) belong to different arc components \(\alpha([q, z]) \) and \(\alpha([x_n, z]) \), respectively. Since (i) implies (ii), it follows that \(\alpha([q, z]) \) and \(\bigcup_n \alpha([x_n, z]) \) are open. Moreover, they are disjoint, which is impossible since \(x \in \alpha([q, z]) \) and \(x_n \to x \).

(i) \(\Rightarrow \) (iv). This follows from (i) \(\Rightarrow \) (iii) since every locally connected continuum has Kelley's property.

(iv) \(\Rightarrow \) (ii). Suppose that for some \(p \in X \), \(X \setminus \{p\} \) has a nonopen arc component \(U \). Let \(u \) be a non end point of \(X \) contained in \(U \) and for each \(n \in \mathbb{N} \), let \(C_n \) be the component of \(X \setminus B_{1/n}(u) \) containing \(p \). If \(x \in X \setminus U \) then \([p, x] \cap U = \emptyset \). In particular, \(u \notin [p, x] \), so that for \(n \) large enough \([p, x] \cap B_{1/n}(u) = \emptyset \). This implies that \([p, x] \subseteq C_n \). By Lemma 1.3, \(\text{Int}(U) = \emptyset \), so that \(C_n = X \). Since \(u \notin C_n \) for every \(n \), it follows that \(u \) is an improper shore point of \(X \).

(v) \(\Rightarrow \) (ii) By Theorem 1.1 \(X \) is smooth. By [3, Theorem 1, p. 194] \(X \) contains no subdendroid of Type 1. Next we show that \(X \) is smooth at each of its points. Let \(p \in X \) and suppose \(X \) is not smooth at \(p \). By [3, Lemma 1, p. 193], \(X \) contains a subdendroid of Type 3. But a Type 3 dendroid contains a subdendroid that does not have Kelley's property, a contradiction. By [2] \(X \) is a dendrite and a dendrite clearly satisfies (ii).

(iii) \(\Rightarrow \) (v). This follows since every subdendroid of a dendrite is a dendrite.

Acknowledgment

We wish to thank the referee for his very useful suggestions, which have been incorporated in the text.

References

Instituto de Matemáticas, UNAM, Circuito Exterior C. U., 04510 México, D. F. Mexico
E-mail address: NEUMANN@UNAM VM1.BITNET

Departamento de Matemáticas, Facultad de Ciencias, UNAM, Circuito Exterior C. U. 04510 México, D. F. Mexico
E-mail address: PUGA@UNAM VM1.BITNET