$C^ \ast$-extreme points of some compact $C^ \ast$-convex sets
HTML articles powered by AMS MathViewer
- by D. R. Farenick and Phillip B. Morenz
- Proc. Amer. Math. Soc. 118 (1993), 765-775
- DOI: https://doi.org/10.1090/S0002-9939-1993-1139466-7
- PDF | Request permission
Abstract:
In the ${C^{\ast }}$-algebra ${M_n}$ of complex $n \times n$ matrices, we consider the notion of noncommutative convexity called ${C^{\ast }}$-convexity and the corresponding notion of a ${C^{\ast }}$-extreme point. We prove that each irreducible element of ${M_n}$ is a ${C^{\ast }}$-extreme point of the ${C^{\ast }}$-convex set it generates, and we classify the ${C^{\ast }}$-extreme points of any ${C^{\ast }}$-convex set generated by a compact set of normal matrices.References
- William Arveson, Subalgebras of $C^{\ast }$-algebras. II, Acta Math. 128 (1972), no. 3-4, 271–308. MR 394232, DOI 10.1007/BF02392166
- Man Duen Choi, Completely positive linear maps on complex matrices, Linear Algebra Appl. 10 (1975), 285–290. MR 376726, DOI 10.1016/0024-3795(75)90075-0
- D. R. Farenick, $C^*$-convexity and matricial ranges, Canad. J. Math. 44 (1992), no. 2, 280–297. MR 1162344, DOI 10.4153/CJM-1992-019-1
- D. R. Farenick, Kreĭn-Mil′man-type problems for compact matricially convex sets, Linear Algebra Appl. 162/164 (1992), 325–334. Directions in matrix theory (Auburn, AL, 1990). MR 1148407, DOI 10.1016/0024-3795(92)90383-L
- Alan Hopenwasser, Robert L. Moore, and V. I. Paulsen, $C^{\ast }$-extreme points, Trans. Amer. Math. Soc. 266 (1981), no. 1, 291–307. MR 613797, DOI 10.1090/S0002-9947-1981-0613797-5
- Richard I. Loebl and Vern I. Paulsen, Some remarks on $C^{\ast }$-convexity, Linear Algebra Appl. 35 (1981), 63–78. MR 599846, DOI 10.1016/0024-3795(81)90266-4
- Kiiti Morita, Analytical characterization of displacements in general Poincaré space, Proc. Imp. Acad. Tokyo 17 (1941), 489–494. MR 15175
- Carl Pearcy and Norberto Salinas, Finite-dimensional representations of separable $C^{\ast }$-algebras, Bull. Amer. Math. Soc. 80 (1974), 970–972. MR 377527, DOI 10.1090/S0002-9904-1974-13601-3
- R. R. Smith and J. D. Ward, The geometric structure of generalized state spaces, J. Functional Analysis 40 (1981), no. 2, 170–184. MR 609440, DOI 10.1016/0022-1236(81)90066-5
- J. G. Stampfli, Extreme points of the numerical range of a hyponormal operator, Michigan Math. J. 13 (1966), 87–89. MR 187097, DOI 10.1307/mmj/1028999483
- Béla Sz.-Nagy and Ciprian Foiaş, An application of dilation theory to hypornormal operators, Acta Sci. Math. (Szeged) 37 (1975), 155–159. MR 383131
Bibliographic Information
- © Copyright 1993 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 118 (1993), 765-775
- MSC: Primary 46L05; Secondary 47A12, 47D20
- DOI: https://doi.org/10.1090/S0002-9939-1993-1139466-7
- MathSciNet review: 1139466