Fourier inversion for piecewise smooth functions in several variables
HTML articles powered by AMS MathViewer
- by Mark A. Pinsky
- Proc. Amer. Math. Soc. 118 (1993), 903-910
- DOI: https://doi.org/10.1090/S0002-9939-1993-1146865-6
- PDF | Request permission
References
- H. Dym and H. P. McKean, Fourier series and integrals, Probability and Mathematical Statistics, No. 14, Academic Press, New York-London, 1972. MR 0442564
- Ian N. Sneddon, Fourier Transforms, McGraw-Hill Book Co., Inc., New York-Toronto-London, 1951. MR 0041963
- G. N. Watson, A Treatise on the Theory of Bessel Functions, Cambridge University Press, Cambridge, England; The Macmillan Company, New York, 1944. MR 0010746
- Alfred Gray and Mark A. Pinsky, Gibbs’ phenomenon for Fourier-Bessel series, Exposition. Math. 11 (1993), no. 2, 123–135. MR 1214664
- Mark A. Pinsky, Nancy K. Stanton, and Peter E. Trapa, Fourier series of radial functions in several variables, J. Funct. Anal. 116 (1993), no. 1, 111–132. MR 1237988, DOI 10.1006/jfan.1993.1106
Bibliographic Information
- © Copyright 1993 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 118 (1993), 903-910
- MSC: Primary 42B99; Secondary 42B10
- DOI: https://doi.org/10.1090/S0002-9939-1993-1146865-6
- MathSciNet review: 1146865