Invariant manifolds of hypercyclic vectors
HTML articles powered by AMS MathViewer
- by Paul S. Bourdon PDF
- Proc. Amer. Math. Soc. 118 (1993), 845-847 Request permission
Abstract:
We show that any hypercyclic operator on Hilbert space has a dense, invariant linear manifold consisting, except for zero, entirely of hypercyclic vectors.References
- Bernard Beauzamy, Un opérateur, sur l’espace de Hilbert, dont tous les polynômes sont hypercycliques, C. R. Acad. Sci. Paris Sér. I Math. 303 (1986), no. 18, 923–925 (French, with English summary). MR 873395
- Bernard Beauzamy, An operator on a separable Hilbert space with many hypercyclic vectors, Studia Math. 87 (1987), no. 1, 71–78. MR 924762, DOI 10.4064/sm-87-1-71-78
- Bernard Beauzamy, An operator on a separable Hilbert space with all polynomials hypercyclic, Studia Math. 96 (1990), no. 1, 81–90. MR 1055079, DOI 10.4064/sm-96-1-81-90
- Paul S. Bourdon and Joel H. Shapiro, Cyclic composition operators on $H^2$, Operator theory: operator algebras and applications, Part 2 (Durham, NH, 1988) Proc. Sympos. Pure Math., vol. 51, Amer. Math. Soc., Providence, RI, 1990, pp. 43–53. MR 1077418 —, Cyclic phenomena for composition operators (in preparation).
- Kit C. Chan and Joel H. Shapiro, The cyclic behavior of translation operators on Hilbert spaces of entire functions, Indiana Univ. Math. J. 40 (1991), no. 4, 1421–1449. MR 1142722, DOI 10.1512/iumj.1991.40.40064
- L. Gehér, Cyclic vectors of a cyclic operator span the space, Proc. Amer. Math. Soc. 33 (1972), 109–110. MR 290131, DOI 10.1090/S0002-9939-1972-0290131-4
- Gilles Godefroy and Joel H. Shapiro, Operators with dense, invariant, cyclic vector manifolds, J. Funct. Anal. 98 (1991), no. 2, 229–269. MR 1111569, DOI 10.1016/0022-1236(91)90078-J
- Paul Richard Halmos, A Hilbert space problem book, 2nd ed., Encyclopedia of Mathematics and its Applications, vol. 17, Springer-Verlag, New York-Berlin, 1982. MR 675952
- Domingo A. Herrero, Limits of hypercyclic and supercyclic operators, J. Funct. Anal. 99 (1991), no. 1, 179–190. MR 1120920, DOI 10.1016/0022-1236(91)90058-D
- Domingo A. Herrero and Zong Yao Wang, Compact perturbations of hypercyclic and supercyclic operators, Indiana Univ. Math. J. 39 (1990), no. 3, 819–829. MR 1078739, DOI 10.1512/iumj.1990.39.39039 C. Kitai, Invariant closed sets for linear operators, Thesis, University of Toronto, 1982.
- Béla Sz.-Nagy and Ciprian Foiaş, Vecteurs cycliques et quasi-affinités, Studia Math. 31 (1968), 35–42 (French). MR 236756, DOI 10.4064/sm-31-1-35-42
- Marco Pavone, Chaotic composition operators on trees, Houston J. Math. 18 (1992), no. 1, 47–56. MR 1159439
- S. Rolewicz, On orbits of elements, Studia Math. 32 (1969), 17–22. MR 241956, DOI 10.4064/sm-32-1-17-22
Additional Information
- © Copyright 1993 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 118 (1993), 845-847
- MSC: Primary 47A05
- DOI: https://doi.org/10.1090/S0002-9939-1993-1148021-4
- MathSciNet review: 1148021