Restrictions to continuous functions and Boolean algebras
HTML articles powered by AMS MathViewer
- by Ireneusz Recław
- Proc. Amer. Math. Soc. 118 (1993), 791-796
- DOI: https://doi.org/10.1090/S0002-9939-1993-1152289-8
- PDF | Request permission
Abstract:
We show that every Borel function $f:\mathbb {R} \to \mathbb {R}$ is continuous on a set $A \notin \mathcal {J}$ if $B(\mathbb {R})/\mathcal {J}$ is weakly distributive. We also show that CCC is not sufficient. We investigate some other conditions considering the problem of restrictions to continuous functions.References
- Henry Blumberg, New properties of all real functions, Trans. Amer. Math. Soc. 24 (1922), no. 2, 113–128. MR 1501216, DOI 10.1090/S0002-9947-1922-1501216-9 Jack B. Brown, Variations on Blumberg’s Theorem, Real Anal. Exchange 9 (1983), 123-137.
- Jack B. Brown and Karel Prikry, Variations on Lusin’s theorem, Trans. Amer. Math. Soc. 302 (1987), no. 1, 77–86. MR 887497, DOI 10.1090/S0002-9947-1987-0887497-6
- Lev Bukovský, Ireneusz Recław, and Miroslav Repický, Spaces not distinguishing pointwise and quasinormal convergence of real functions, Topology Appl. 41 (1991), no. 1-2, 25–40. MR 1129696, DOI 10.1016/0166-8641(91)90098-7
- J. Cichoń and M. Morayne, Universal functions and generalized classes of functions, Proc. Amer. Math. Soc. 102 (1988), no. 1, 83–89. MR 915721, DOI 10.1090/S0002-9939-1988-0915721-6
- J. Cichoń, M. Morayne, J. Pawlikowski, and S. Solecki, Decomposing Baire functions, J. Symbolic Logic 56 (1991), no. 4, 1273–1283. MR 1136456, DOI 10.2307/2275474 N. Lusin, Sur les ensembles toujurs de premiere categorie, Fund. Math. 21 (1933), 114-126.
- Arnold W. Miller, Special subsets of the real line, Handbook of set-theoretic topology, North-Holland, Amsterdam, 1984, pp. 201–233. MR 776624 E. Marczewski (Szpilrajn), Sur une classe de fonctions de W. Sierpiński et la classe correspondante d’ensembles, Fund. Math. 24 (1935), 17-24.
- Juichi Shinoda, Some consequences of Martin’s axiom and the negation of the continuum hypothesis, Nagoya Math. J. 49 (1973), 117–125. MR 319754, DOI 10.1017/S0027763000015336 W. Sierpiński, Sur un probleme concernant les fonctions semi-continues, Fund. Math. 28 (1937), 1-6. W. Sierpiński and A. Zygmund, Sur une fonction qui est discontinue tout ensemble de puissance de continu, Fund. Math. 4 (1923), 316-318.
- Elżbieta Wagner, Sequences of measurable functions, Fund. Math. 112 (1981), no. 2, 89–102. MR 619485, DOI 10.4064/fm-112-2-89-102
Bibliographic Information
- © Copyright 1993 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 118 (1993), 791-796
- MSC: Primary 26A21; Secondary 04A15, 06E99, 28A20, 54C30
- DOI: https://doi.org/10.1090/S0002-9939-1993-1152289-8
- MathSciNet review: 1152289