Asymptotic behaviour of measure-valued critical branching processes
HTML articles powered by AMS MathViewer
- by Alison M. Etheridge
- Proc. Amer. Math. Soc. 118 (1993), 1251-1261
- DOI: https://doi.org/10.1090/S0002-9939-1993-1100650-X
- PDF | Request permission
Abstract:
Measure-valued branching processes can be characterized in terms of the Laplace transform of their transition densities and this gives rise to a second order nonlinear p.d.e.—the evolution equation of the process. We write the solution to this evolution equation as a series, each of whose coefficients is expressed in terms of the linear semigroup corresponding to the spatial part of the measure-valued process. From this we obtain a simple proof that if the spatial part of the process is a recurrent (resp., transient) Markov process on a standard Borel space and the initial value of the process is an invariant measure of this spatial process, then the process has no (resp., has a unique) nontrivial limiting distribution.References
- E. A. Carlen, S. Kusuoka, and D. W. Stroock, Upper bounds for symmetric Markov transition functions, Ann. Inst. H. Poincaré Probab. Statist. 23 (1987), no. 2, suppl., 245–287 (English, with French summary). MR 898496
- D. A. Dawson, Stochastic evolution equations and related measure processes, J. Multivariate Anal. 5 (1975), 1–52. MR 388539, DOI 10.1016/0047-259X(75)90054-8
- D. A. Dawson, The critical measure diffusion process, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 40 (1977), no. 2, 125–145. MR 478374, DOI 10.1007/BF00532877
- E. B. Dynkin, Superprocesses and their linear additive functionals, Trans. Amer. Math. Soc. 314 (1989), no. 1, 255–282. MR 930086, DOI 10.1090/S0002-9947-1989-0930086-7
- E. B. Dynkin, Three classes of infinite-dimensional diffusions, J. Funct. Anal. 86 (1989), no. 1, 75–110. MR 1013934, DOI 10.1016/0022-1236(89)90065-7
- E. B. Dynkin, Regular transition functions and regular superprocesses, Trans. Amer. Math. Soc. 316 (1989), no. 2, 623–634. MR 951884, DOI 10.1090/S0002-9947-1989-0951884-X
- Stewart N. Ethier and Thomas G. Kurtz, Markov processes, Wiley Series in Probability and Mathematical Statistics: Probability and Mathematical Statistics, John Wiley & Sons, Inc., New York, 1986. Characterization and convergence. MR 838085, DOI 10.1002/9780470316658 A. M. Etheridge, Asymptotic behaviour of some measure-valued diffusions, Oxford Ph.D. thesis, 1989. —, Measure-valued critical branching diffusion processes with immigration, unpublished manuscript.
- William Feller, Diffusion processes in genetics, Proceedings of the Second Berkeley Symposium on Mathematical Statistics and Probability, 1950, University of California Press, Berkeley-Los Angeles, Calif., 1951, pp. 227–246. MR 0046022
- William Feller, An introduction to probability theory and its applications. Vol. II, John Wiley & Sons, Inc., New York-London-Sydney, 1966. MR 0210154
- I. Iscoe, A weighted occupation time for a class of measure-valued branching processes, Probab. Theory Relat. Fields 71 (1986), no. 1, 85–116. MR 814663, DOI 10.1007/BF00366274
- Olav Kallenberg, Stability of critical cluster fields, Math. Nachr. 77 (1977), 7–43. MR 443078, DOI 10.1002/mana.19770770102
- Shinzo Watanabe, A limit theorem of branching processes and continuous state branching processes, J. Math. Kyoto Univ. 8 (1968), 141–167. MR 237008, DOI 10.1215/kjm/1250524180
- E. Wild, On Boltzmann’s equation in the kinetic theory of gases, Proc. Cambridge Philos. Soc. 47 (1951), 602–609. MR 42999, DOI 10.1017/s0305004100026992
Bibliographic Information
- © Copyright 1993 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 118 (1993), 1251-1261
- MSC: Primary 60J80; Secondary 60G57, 60J60
- DOI: https://doi.org/10.1090/S0002-9939-1993-1100650-X
- MathSciNet review: 1100650