Poincaré and Sobolev inequalities in product spaces
HTML articles powered by AMS MathViewer
- by Xian Liang Shi and Alberto Torchinsky
- Proc. Amer. Math. Soc. 118 (1993), 1117-1124
- DOI: https://doi.org/10.1090/S0002-9939-1993-1137233-1
- PDF | Request permission
Abstract:
Some local Poincaré and Sobolev inequalities involving weights in product spaces are established.References
- Sagun Chanillo and Richard L. Wheeden, Weighted Poincaré and Sobolev inequalities and estimates for weighted Peano maximal functions, Amer. J. Math. 107 (1985), no. 5, 1191–1226. MR 805809, DOI 10.2307/2374351
- Eugene B. Fabes, Carlos E. Kenig, and Raul P. Serapioni, The local regularity of solutions of degenerate elliptic equations, Comm. Partial Differential Equations 7 (1982), no. 1, 77–116. MR 643158, DOI 10.1080/03605308208820218 E. Harboure, Two-weighted Sobolev and Poincaré inequalities and some applications, preprint.
- Alberto Torchinsky, Box maximal functions, Miniconference on operator theory and partial differential equations (Canberra, 1983) Proc. Centre Math. Anal. Austral. Nat. Univ., vol. 5, Austral. Nat. Univ., Canberra, 1984, pp. 39–46. MR 757566
- Alberto Torchinsky, Real-variable methods in harmonic analysis, Pure and Applied Mathematics, vol. 123, Academic Press, Inc., Orlando, FL, 1986. MR 869816
Bibliographic Information
- © Copyright 1993 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 118 (1993), 1117-1124
- MSC: Primary 35R45; Secondary 26D10, 42B25, 46E35
- DOI: https://doi.org/10.1090/S0002-9939-1993-1137233-1
- MathSciNet review: 1137233