Symmetric functions, Lebesgue measurability, and the Baire property
HTML articles powered by AMS MathViewer
- by Udayan B. Darji
- Proc. Amer. Math. Soc. 118 (1993), 1151-1158
- DOI: https://doi.org/10.1090/S0002-9939-1993-1145943-5
- PDF | Request permission
Abstract:
In this paper, we generalize some results of Stein and Zygmund and of Evans and Larson concerning symmetric functions. In particular, we show that if $f$ is Lebesgue measurable or has the Baire property in the wide sense, then the set of symmetric points of $f$ is Lebesgue measurable or has the Baire property in the wide sense, respectively. We also give some examples that show that these results cannot be improved in a certain sense. Finally, we show that there are plenty of examples of functions that are both Lebesgue measurable and have the Baire property in the wide sense, yet the set of points where each of the functions is symmetric and discontinuous has the same cardinality as that of the continuum.References
- Jack B. Brown and Karel Prikry, Variations on Lusin’s theorem, Trans. Amer. Math. Soc. 302 (1987), no. 1, 77–86. MR 887497, DOI 10.1090/S0002-9947-1987-0887497-6
- Paul Erdős, Some remarks on subgroups of real numbers, Colloq. Math. 42 (1979), 119–120. MR 567551, DOI 10.4064/cm-42-1-119-120
- M. J. Evans and L. Larson, The continuity of symmetric and smooth functions, Acta Math. Hungar. 43 (1984), no. 3-4, 251–257. MR 733857, DOI 10.1007/BF01958022
- Arnold W. Miller, Special subsets of the real line, Handbook of set-theoretic topology, North-Holland, Amsterdam, 1984, pp. 201–233. MR 776624
- C. J. Neugebauer, Symmetric, continuous, and smooth functions, Duke Math. J. 31 (1964), 23–31. MR 158035
- J. v. Neumann, Ein System algebraisch unabhängiger Zahlen, Math. Ann. 99 (1928), no. 1, 134–141 (German). MR 1512442, DOI 10.1007/BF01459089
- W. Sierpiński, Sur les nombres dont la somme de diviseurs est une puissance du nombre $2$, Calcutta Math. Soc. Golden Jubilee Commemoration Vol. (1958/59), Part I, Calcutta Math. Soc., Calcutta, 1963, pp. 7–9 (French). MR 0188145
- E. M. Stein and A. Zygmund, On the differentiability of functions, Studia Math. 23 (1963/64), 247–283. MR 158955, DOI 10.4064/sm-23-3-247-283
Bibliographic Information
- © Copyright 1993 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 118 (1993), 1151-1158
- MSC: Primary 26A21; Secondary 28A20, 54C30, 54C50, 54H05
- DOI: https://doi.org/10.1090/S0002-9939-1993-1145943-5
- MathSciNet review: 1145943