The Poincaré inequality and entire functions
HTML articles powered by AMS MathViewer
- by J. Michael Pearson
- Proc. Amer. Math. Soc. 118 (1993), 1193-1197
- DOI: https://doi.org/10.1090/S0002-9939-1993-1152286-2
- PDF | Request permission
Abstract:
Inequalities for spaces of entire functions on ${{\mathbf {C}}^n}$, which generalize the Poincaré inequality for Gaussian measure, are obtained. The relationship between these inequalities and hypercontractive estimates for diffusion semigroups are discussed.References
- V. Bargmann, On a Hilbert space of analytic functions and an associated integral transform, Comm. Pure Appl. Math. 14 (1961), 187–214. MR 157250, DOI 10.1002/cpa.3160140303
- William Beckner, Sobolev inequalities, the Poisson semigroup, and analysis on the sphere $S^n$, Proc. Nat. Acad. Sci. U.S.A. 89 (1992), no. 11, 4816–4819. MR 1164616, DOI 10.1073/pnas.89.11.4816
- William Beckner, A generalized Poincaré inequality for Gaussian measures, Proc. Amer. Math. Soc. 105 (1989), no. 2, 397–400. MR 954373, DOI 10.1090/S0002-9939-1989-0954373-7
- Leonard Gross, Logarithmic Sobolev inequalities, Amer. J. Math. 97 (1975), no. 4, 1061–1083. MR 420249, DOI 10.2307/2373688
- Svante Janson, On hypercontractivity for multipliers on orthogonal polynomials, Ark. Mat. 21 (1983), no. 1, 97–110. MR 706641, DOI 10.1007/BF02384302
- Carl E. Mueller and Fred B. Weissler, Hypercontractivity for the heat semigroup for ultraspherical polynomials and on the $n$-sphere, J. Functional Analysis 48 (1982), no. 2, 252–283. MR 674060, DOI 10.1016/0022-1236(82)90069-6
- Edward Nelson, The free Markoff field, J. Functional Analysis 12 (1973), 211–227. MR 0343816, DOI 10.1016/0022-1236(73)90025-6
- J. Michael Pearson, A hypercontractive estimate for the heat semigroup on $\textbf {P}^2$, Michigan Math. J. 37 (1990), no. 3, 439–446. MR 1077327, DOI 10.1307/mmj/1029004201
- I. E. Segal, Foundations of the theory of dynamical systems of infinitely many degrees of freedom. I, Mat.-Fys. Medd. Danske Vid. Selsk. 31 (1959), no. 12, 39 pp. (1959). MR 112626
- Irving E. Segal, Mathematical problems of relativistic physics, Lectures in Applied Mathematics, American Mathematical Society, Providence, R.I., 1963. With an appendix by George W. Mackey. MR 0144227
Bibliographic Information
- © Copyright 1993 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 118 (1993), 1193-1197
- MSC: Primary 32A15
- DOI: https://doi.org/10.1090/S0002-9939-1993-1152286-2
- MathSciNet review: 1152286