Equations $au^ l_ n=bu^ k_ m$ satisfied by members of recurrence sequences
HTML articles powered by AMS MathViewer
- by H. P. Schlickewei and W. M. Schmidt
- Proc. Amer. Math. Soc. 118 (1993), 1043-1051
- DOI: https://doi.org/10.1090/S0002-9939-1993-1152290-4
- PDF | Request permission
Abstract:
Let ${\{ {u_n}\} _{n \in \mathbb {Z}}}$ be a linear recurrence sequence. Given $a \ne 0, b \ne 0$, and natural $k \ne l$, we study equations as indicated in the title in unknowns $n,m$. It turns out that under natural conditions on the sequence $\{ {u_n}\}$, there are only finitely many solutions.References
- Jan-Hendrik Evertse, On sums of $S$-units and linear recurrences, Compositio Math. 53 (1984), no. 2, 225–244. MR 766298
- Michel Laurent, Équations exponentielles-polynômes et suites récurrentes linéaires. II, J. Number Theory 31 (1989), no. 1, 24–53 (French, with English summary). MR 978098, DOI 10.1016/0022-314X(89)90050-4 G. Pólya and G. Szegö, Aufgaben und Lehrsätze aus der Analysis. I, Dritte Auflage, Springer, Berlin, Göttingen, Heidelberg, and New York, 1964.
- A. J. van der Poorten and H. P. Schlickewei, Zeros of recurrence sequences, Bull. Austral. Math. Soc. 44 (1991), no. 2, 215–223. MR 1126359, DOI 10.1017/S0004972700029646
- Hans Peter Schlickewei, Multiplicities of algebraic linear recurrences, Acta Math. 170 (1993), no. 2, 151–180. MR 1226526, DOI 10.1007/BF02392784
- H. P. Schlickewei and Wolfgang M. Schmidt, On polynomial-exponential equations, Math. Ann. 296 (1993), no. 2, 339–361. MR 1219906, DOI 10.1007/BF01445109 —, Linear equations in members of recurrence sequences (to appear). —, The intersection of recurrence sequences (to appear).
Bibliographic Information
- © Copyright 1993 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 118 (1993), 1043-1051
- MSC: Primary 11B37
- DOI: https://doi.org/10.1090/S0002-9939-1993-1152290-4
- MathSciNet review: 1152290