The invariant of Chen-Nagano on flag manifolds
HTML articles powered by AMS MathViewer
- by Cristián U. Sánchez
- Proc. Amer. Math. Soc. 118 (1993), 1237-1242
- DOI: https://doi.org/10.1090/S0002-9939-1993-1163336-1
- PDF | Request permission
Abstract:
In this paper an extension of the $2$-number $({\# _2}(M))$ of a symmetric space is given for $k$-symmetric spaces. The new invariant is computed for flag manifolds which are not symmetric. It turns out to be equal to the Euler-Poincaré characteristic.References
- Glen E. Bredon, Introduction to compact transformation groups, Pure and Applied Mathematics, Vol. 46, Academic Press, New York-London, 1972. MR 0413144
- Bang-Yen Chen and Tadashi Nagano, A Riemannian geometric invariant and its applications to a problem of Borel and Serre, Trans. Amer. Math. Soc. 308 (1988), no. 1, 273–297. MR 946443, DOI 10.1090/S0002-9947-1988-0946443-8
- Dirk Ferus, Symmetric submanifolds of Euclidean space, Math. Ann. 247 (1980), no. 1, 81–93. MR 565140, DOI 10.1007/BF01359868
- Oldřich Kowalski, Generalized symmetric spaces, Lecture Notes in Mathematics, vol. 805, Springer-Verlag, Berlin-New York, 1980. MR 579184, DOI 10.1007/BFb0103324 C. U. Sánchez, Regular $S$-structures on spheres, Indiana Univ. Math J. 37 (1988), 165-180.
- Cristián U. Sánchez, $k$-symmetric submanifolds of $\textbf {R}^N$, Math. Ann. 270 (1985), no. 2, 297–316. MR 771985, DOI 10.1007/BF01456188
- Masaru Takeuchi, Two-number of symmetric $R$-spaces, Nagoya Math. J. 115 (1989), 43–46. MR 1018081, DOI 10.1017/S0027763000001513
Bibliographic Information
- © Copyright 1993 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 118 (1993), 1237-1242
- MSC: Primary 53C30; Secondary 53C22, 53C35
- DOI: https://doi.org/10.1090/S0002-9939-1993-1163336-1
- MathSciNet review: 1163336