Chain transitivity and rotation shadowing for annulus homeomorphisms
HTML articles powered by AMS MathViewer
- by Fernanda Botelho and Liang Chen
- Proc. Amer. Math. Soc. 118 (1993), 1173-1177
- DOI: https://doi.org/10.1090/S0002-9939-1993-1169877-5
- PDF | Request permission
Abstract:
We present a relation between the rotation of chain transitive sets and the rotation shadowing for annulus homeomorphisms isotopic to identity.References
- Rufus Bowen, On Axiom A diffeomorphisms, Regional Conference Series in Mathematics, No. 35, American Mathematical Society, Providence, R.I., 1978. MR 0482842
- Philip L. Boyland, Rotation sets and Morse decompositions in twist maps, Ergodic Theory Dynam. Systems 8$^*$ (1988), no. Charles Conley Memorial Issue, 33–61. MR 967628, DOI 10.1017/S0143385700009329
- Fernanda Botelho and Liang Chen, On the rotation shadowing property for annulus maps, Continuum theory and dynamical systems, Lecture Notes in Pure and Appl. Math., vol. 149, Dekker, New York, 1993, pp. 35–42. MR 1235343
- Marcy Barge and Richard Swanson, Rotation shadowing properties of circle and annulus maps, Ergodic Theory Dynam. Systems 8 (1988), no. 4, 509–521. MR 980794, DOI 10.1017/S0143385700004661
- Charles Conley, Isolated invariant sets and the Morse index, CBMS Regional Conference Series in Mathematics, vol. 38, American Mathematical Society, Providence, R.I., 1978. MR 511133
- John Franks, Recurrence and fixed points of surface homeomorphisms, Ergodic Theory Dynam. Systems 8$^*$ (1988), no. Charles Conley Memorial Issue, 99–107. MR 967632, DOI 10.1017/S0143385700009366
- Michael Handel, The rotation set of a homeomorphism of the annulus is closed, Comm. Math. Phys. 127 (1990), no. 2, 339–349. MR 1037109
- Richard Swanson, Periodic orbits and the continuity of rotation numbers, Proc. Amer. Math. Soc. 117 (1993), no. 1, 269–273. MR 1112502, DOI 10.1090/S0002-9939-1993-1112502-X
Bibliographic Information
- © Copyright 1993 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 118 (1993), 1173-1177
- MSC: Primary 58F15; Secondary 54H20
- DOI: https://doi.org/10.1090/S0002-9939-1993-1169877-5
- MathSciNet review: 1169877