Statistical limit points
HTML articles powered by AMS MathViewer
- by J. A. Fridy PDF
- Proc. Amer. Math. Soc. 118 (1993), 1187-1192 Request permission
Abstract:
Following the concept of a statistically convergent sequence $x$, we define a statistical limit point of $x$ as a number $\lambda$ that is the limit of a subsequence $\{ {x_{k(j)}}\}$ of $x$ such that the set $\{ k(j):j \in \mathbb {N}\}$ does not have density zero. Similarly, a statistical cluster point of $x$ is a number $\gamma$ such that for every $\varepsilon > 0$ the set $\{ k \in \mathbb {N}:|{x_k} - \gamma | < \varepsilon \}$ does not have density zero. These concepts, which are not equivalent, are compared to the usual concept of limit point of a sequence. Statistical analogues of limit point results are obtained. For example, if $x$ is a bounded sequence then $x$ has a statistical cluster point but not necessarily a statistical limit point. Also, if the set $M: = \{ k \in \mathbb {N}:{x_k} > {x_{k + 1}}\}$ has density one and $x$ is bounded on $M$, then $x$ is statistically convergent.References
- R. Creighton Buck, The measure theoretic approach to density, Amer. J. Math. 68 (1946), 560–580. MR 18196, DOI 10.2307/2371785
- J. S. Connor, The statistical and strong $p$-Cesàro convergence of sequences, Analysis 8 (1988), no. 1-2, 47–63. MR 954458, DOI 10.1524/anly.1988.8.12.47
- Jeff Connor, $R$-type summability methods, Cauchy criteria, $P$-sets and statistical convergence, Proc. Amer. Math. Soc. 115 (1992), no. 2, 319–327. MR 1095221, DOI 10.1090/S0002-9939-1992-1095221-7
- H. Fast, Sur la convergence statistique, Colloq. Math. 2 (1951), 241–244 (1952) (French). MR 48548, DOI 10.4064/cm-2-3-4-241-244
- J. A. Fridy, On statistical convergence, Analysis 5 (1985), no. 4, 301–313. MR 816582, DOI 10.1524/anly.1985.5.4.301
- J. A. Fridy and H. I. Miller, A matrix characterization of statistical convergence, Analysis 11 (1991), no. 1, 59–66. MR 1113068, DOI 10.1524/anly.1991.11.1.59
- L. Kuipers and H. Niederreiter, Uniform distribution of sequences, Pure and Applied Mathematics, Wiley-Interscience [John Wiley & Sons], New York-London-Sydney, 1974. MR 0419394
- Ivan Niven and Herbert S. Zuckerman, An introduction to the theory of numbers, 4th ed., John Wiley & Sons, New York-Chichester-Brisbane, 1980. MR 572268
- I. J. Schoenberg, The integrability of certain functions and related summability methods, Amer. Math. Monthly 66 (1959), 361–375. MR 104946, DOI 10.2307/2308747 A. Zygmund, Trigonometric series, 2nd ed., vol. II, Cambridge Univ. Press, London and New York, 1979.
Additional Information
- © Copyright 1993 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 118 (1993), 1187-1192
- MSC: Primary 40C99
- DOI: https://doi.org/10.1090/S0002-9939-1993-1181163-6
- MathSciNet review: 1181163