The Hausdorff dimension of self-similar sets under a pinching condition
HTML articles powered by AMS MathViewer
- by Xiao Ping Gu
- Proc. Amer. Math. Soc. 118 (1993), 1281-1289
- DOI: https://doi.org/10.1090/S0002-9939-1993-1181166-1
- PDF | Request permission
Abstract:
We study self-similar sets in the case where the construction diffeomorphisms are not necessarily conformal. Using topological pressure we give an upper estimate of the Hausdorff dimension, when the construction diffeomorphisms are ${C^{1 + \kappa }}$ and satisfy a $\kappa$-pinching condition for some $\kappa \leqslant 1$. Moreover, if the construction diffeomorphisms also satisfy the disjoint open set condition we then give a lower bound for the Hausdorff dimension.References
- Tim Bedford, Hausdorff dimension and box dimension in self-similar sets, Proceedings of the Conference: Topology and Measure, V (Binz, 1987) Wissensch. Beitr., Ernst-Moritz-Arndt Univ., Greifswald, 1988, pp. 17–26. MR 1029553
- Tim Bedford, Dimension and dynamics for fractal recurrent sets, J. London Math. Soc. (2) 33 (1986), no. 1, 89–100. MR 829390, DOI 10.1112/jlms/s2-33.1.89
- Rufus Bowen, Equilibrium states and the ergodic theory of Anosov diffeomorphisms, Lecture Notes in Mathematics, Vol. 470, Springer-Verlag, Berlin-New York, 1975. MR 0442989
- F. M. Dekking, Recurrent sets, Adv. in Math. 44 (1982), no. 1, 78–104. MR 654549, DOI 10.1016/0001-8708(82)90066-4
- Kenneth Falconer, Fractal geometry, John Wiley & Sons, Ltd., Chichester, 1990. Mathematical foundations and applications. MR 1102677
- John E. Hutchinson, Fractals and self-similarity, Indiana Univ. Math. J. 30 (1981), no. 5, 713–747. MR 625600, DOI 10.1512/iumj.1981.30.30055 Y. Jiang, On non-conformal semigroups, preprint, State University of New York at Stony Brook.
- Jean-Pierre Kahane, Some random series of functions, 2nd ed., Cambridge Studies in Advanced Mathematics, vol. 5, Cambridge University Press, Cambridge, 1985. MR 833073
- Heather McCluskey and Anthony Manning, Hausdorff dimension for horseshoes, Ergodic Theory Dynam. Systems 3 (1983), no. 2, 251–260. MR 742227, DOI 10.1017/S0143385700001966
- R. Daniel Mauldin and S. C. Williams, Hausdorff dimension in graph directed constructions, Trans. Amer. Math. Soc. 309 (1988), no. 2, 811–829. MR 961615, DOI 10.1090/S0002-9947-1988-0961615-4
- Peter Walters, An introduction to ergodic theory, Graduate Texts in Mathematics, vol. 79, Springer-Verlag, New York-Berlin, 1982. MR 648108
Bibliographic Information
- © Copyright 1993 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 118 (1993), 1281-1289
- MSC: Primary 28A78; Secondary 58F11
- DOI: https://doi.org/10.1090/S0002-9939-1993-1181166-1
- MathSciNet review: 1181166