An inequality for sections and projections of a convex set
HTML articles powered by AMS MathViewer
- by Jonathan E. Spingarn
- Proc. Amer. Math. Soc. 118 (1993), 1219-1224
- DOI: https://doi.org/10.1090/S0002-9939-1993-1184087-3
- PDF | Request permission
Abstract:
Let $K \subset {{\mathbf {R}}^d}$ be a convex body, $\gamma$ its center of mass. For $\Lambda \subset {{\mathbf {R}}^d}$ a subspace of dimension $d - k$, we establish the inequality \[ {\operatorname {Vol} _d}(K) \leqslant {\operatorname {Vol} _{d - k}}(K|\Lambda ){\operatorname {Vol} _k}((K - \gamma ) \cap {\Lambda ^ \bot })\] (where $K|\Lambda$ denotes orthogonal projection of $K$ onto $\Lambda$). Equality holds only if each $k$-dimensional section of $K$ parallel to ${\Lambda ^ \bot }$ is a translate of $(K - \gamma ) \cap {\Lambda ^ \bot }$.References
- T. Bonnesen and W. Fenchel, Theorie der Konvexen Körper, Chelsea, New York, 1948.
- Ju. D. Burago and V. A. Zalgaller, Geometricheskie neravenstva, “Nauka” Leningrad. Otdel., Leningrad, 1980 (Russian). MR 602952
- G. D. Chakerian, Inequalities for the difference body of a convex body, Proc. Amer. Math. Soc. 18 (1967), 879–884. MR 218972, DOI 10.1090/S0002-9939-1967-0218972-8
- Eric L. Grinberg, Isoperimetric inequalities and identities for $k$-dimensional cross-sections of convex bodies, Math. Ann. 291 (1991), no. 1, 75–86. MR 1125008, DOI 10.1007/BF01445191
- H. Guggenheimer and E. Lutwak, A characterization of the $n$-dimensional parallelotope, Amer. Math. Monthly 83 (1976), no. 6, 475–478. MR 400055, DOI 10.2307/2318346
- H. Hadwiger, Vorlesungen über Inhalt, Oberfläche und Isoperimetrie, Springer-Verlag, Berlin-Göttingen-Heidelberg, 1957 (German). MR 0102775
- Edwin Hewitt and Karl Stromberg, Real and abstract analysis, Graduate Texts in Mathematics, No. 25, Springer-Verlag, New York-Heidelberg, 1975. A modern treatment of the theory of functions of a real variable; Third printing. MR 0367121
- Erwin Lutwak, Mean dual and harmonic cross-sectional measures, Ann. Mat. Pura Appl. (4) 119 (1979), 139–148. MR 551220, DOI 10.1007/BF02413172
- Erwin Lutwak, Intersection bodies and dual mixed volumes, Adv. in Math. 71 (1988), no. 2, 232–261. MR 963487, DOI 10.1016/0001-8708(88)90077-1 R. T. Rockafellar, Convex analysis, Princeton Univ. Press, Princeton, NJ, 1970.
- C. A. Rogers and G. C. Shephard, Convex bodies associated with a given convex body, J. London Math. Soc. 33 (1958), 270–281. MR 101508, DOI 10.1112/jlms/s1-33.3.270
Bibliographic Information
- © Copyright 1993 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 118 (1993), 1219-1224
- MSC: Primary 52A39; Secondary 52A40
- DOI: https://doi.org/10.1090/S0002-9939-1993-1184087-3
- MathSciNet review: 1184087