A CONSTRUCTION OF A SUBSPACE IN EUCLIDEAN SPACE
WITH DESIGNATED VALUES OF DIMENSION
AND METRIC DIMENSION

TATSUO GOTO

(Communicated by James West)

Dedicated to Professor Ryosuke Nakagawa on his 60th birthday

Abstract. For every integer m, k, and n such that $0 < m < n - 1$ and $m < k < \min\{2m, n - 1\}$, we construct a subspace $S^n_{m,k}$ in Euclidean n-space \mathbb{R}^n satisfying the conditions that $\mu\dim S^n_{m,k} = m$ and $\dim S^n_{m,k} = k$, where $\mu\dim$ denotes the metric dimension.

1. Introduction

Let X be a subspace in Euclidean n-space \mathbb{R}^n with $\mu\dim X = m$, $0 < m \leq n - 1$, where $\mu\dim$ denotes the metric dimension. Then we have $m \leq \dim X \leq \min\{2m, n - 1\}$ by Katetov's inequality $\dim X \leq 2\mu\dim X$ [3].

In a previous paper [2] we constructed a subspace $S^n_{n,m}$ in \mathbb{R}^n such that $\mu\dim S^n_{n,m} = m$ and $\dim S^n_{n,m} = \min\{2m, n - 1\}$. Thus the space $S^n_{n,m}$ is a subspace in \mathbb{R}^n of metric dimension m which has the maximal discrepancy with its covering dimension.

The purpose of this note is to prove the following theorem.

Theorem. Let m, k, and n be arbitrary integers such that $0 < m < n - 1$ and $m < k < \min\{2m, n - 1\}$. Then there exists a subspace $S^n_{m,k}$ in \mathbb{R}^n such that $\mu\dim S^n_{m,k} = m$ and $\dim S^n_{m,k} = k$.

The space $S^n_{m,k}$ given below can be expressed as $S^n_{m,k} = S^n_m \cap N^n_k$, where S^n_m denotes a space which is a slight modification of $S^n_{n,m}$ and N^n_k denotes Nöbeling's k-dimensional space in \mathbb{R}^n.

2. Notation and definitions

We denote by \mathbb{Q}, \mathbb{Z}, and \mathbb{N} the set of rational numbers, integers, and positive integers, respectively. For a point $x = (x_i)$ in \mathbb{R}^n we let $r(x) = \text{card}\{i: x_i \in \mathbb{Q}\}$. Then Nöbeling's k-dimensional space N^n_k in \mathbb{R}^n can be expressed as $N^n_k = \{x \in \mathbb{R}^n : r(x) \leq k\}$ (cf. [1]).

Received by the editors December 3, 1991.

1991 Mathematics Subject Classification. Primary 55M10.

Key words and phrases. Dimension, metric dimension, Euclidean space, Nöbeling's space.
For a metric space X the metric dimension $\mu \dim X$ is defined as follows: $\mu \dim X \leq m$ iff for every $\epsilon > 0$ there exists an open cover \mathcal{U} of X such that $\text{mesh} \mathcal{U} < \epsilon$ and $\text{ord} \mathcal{U} \leq n + 1$ (cf. [1]).

The construction of the space $S_{n, m}$ in [2] is as follows. Let $T_i = \{t_{i,j} : j \in \mathbb{Z}\}, i \in \mathbb{N}$, be a set of real numbers such that:

(1)
$$t_{i,j+1} - t_{i,j} = 1/i$$

for every j and

(2)
$$T_i \cap T_{i'} = \emptyset \text{ if } i \neq i'.$$

For every $x \in \mathbb{R}^n$, we set $r_i(x) = \text{card}\{j : x_j \in T_i\}, i \in \mathbb{N}$. Then the space $S_{n, m}$ in [2] can be written as

$$S_{n, m} = \{x \in \mathbb{R}^n : r_i(x) \leq m \text{ for every } i \in \mathbb{N}\}.$$

In this construction we can assume that each T_i is contained in \mathbb{Q}, and we denote by S^n_m the space $S_{n, m}$ obtained by this modification.

3. Proof of the Theorem

We need a lemma due to Wilkinson [4].

Lemma. Suppose that A_1, A_2, \ldots are closed proper subsets in \mathbb{R}^n such that $\dim(A_i \cap A_j) \leq m$ whenever $i \neq j$. Then we have $\dim(\mathbb{R}^n - \bigcup_{i=1}^{\infty} A_i) \geq n - m - 2$.

Proof of the Theorem. By the definition

$$S^n_m = \{x \in \mathbb{R}^n : r_i(x) \leq m \text{ for every } i \in \mathbb{N}\}.$$

Since $T_i \subset \mathbb{Q}$ for every i, it follows that $r_i(x) \leq r(x)$ for $x \in \mathbb{R}^n$, and hence $N^n_m \subset S^n_m$. Thus we have $N^n_m = S^n_{m,m} \subset S^n_{m,k} \subset S^n_m$, which implies that $m = \mu \dim N^n_m \leq \mu \dim S^n_{m,k} \leq \mu \dim S^n_m = m$ by [2, Lemma 4]. Thus we obtain

$$\mu \dim S^n_{m,k} = m \text{ for every } k, \ m \leq k \leq \min\{2m, n - 1\}.$$

Moreover, we have $\dim(S^n_{m,k+1} - S^n_{m,k}) \leq 0$ because $S^n_{m,k+1} - S^n_{m,k} = S^n_m \cap (N^n_{k+1} - N^n_k)$ and $\dim(N^n_{k+1} - N^n_k) = 0$. Thus we obtain

$$\dim S^n_{m,k+1} \leq \dim S^n_{m,k} + 1 \text{ for every } k, \ m \leq k \leq \min\{2m, n - 1\}.$$

We let $A_i = \{x \in \mathbb{R}^n : r_i(x) \geq m + 1\}, i \in \mathbb{N}$. Condition (1) implies that each A_i is the union of a countable locally finite family of $(n - m - 1)$-dimensional planes. Hence, A_i is closed in \mathbb{R}^n and $\dim A_i = n - m - 1$. From (3) it follows that $\mathbb{R}^n - S^n_m = \bigcup\{A_i : i \in \mathbb{N}\}$.

Case 1. $2m \geq n - 1$. In this case we have a sequence

$$N^n_m = S^n_{m,m} \subset S^n_{m,m+1} \subset \cdots \subset S^n_{m,n-1}.$$

In view of (5), to prove that $\dim S^n_{m,k} = k$ for every k it suffices to show

$$\dim S^n_{m,n-1} \geq n - 1.$$

From (2) and the assumption that $2m \geq n - 1$, it follows that $A_i \cap A_j = \emptyset$ if $i \neq j$. Since $\mathbb{R}^n - N^n_{n-1}$ consists of a countable number of points and since

$$\mathbb{R}^n - S^n_{m,n-1} = (\mathbb{R}^n - S^n_m) \cup (\mathbb{R}^n - N^n_{n-1}) = \bigcup\{A_i : i \in \mathbb{N}\} \cup (\mathbb{R}^n - N^n_{n-1}),$$

we obtain (6) by the Lemma.
Case 2. $2m < n - 1$. In this case we have a sequence

$$N^n_m = S^n_{m,m} \subset S^n_{m,m+1} \subset \cdots \subset S^n_{m,2m}.$$

It follows from (2) that $\dim(A_i \cap A_j) \leq n - 2m - 2$ if $i \neq j$, because $2m < n - 1$. On the other hand, $\mathbb{R}^n - N^n_{2m}$ is the countable union of $(n - 2m - 1)$-dimensional planes B_j, $j \in \mathbb{N}$. Hence we have

$$\mathbb{R}^n - S^n_{m,k} = \bigcup \{A_i: i \in \mathbb{N}\} \cup \{B_j: j \in \mathbb{N}\}.$$

It is clear that, for every i and j, $B_j \subset A_i$, or $\dim(A_i \cap B_j) \leq n - 2m - 2$ and that $\dim(B_j \cap B_{j'}) \leq n - 2m - 2$ whenever $j \neq j'$. Thus it follows from the Lemma that

$$\dim S^n_{m,2m} \geq n - (n - 2m - 2) - 2 = 2m.$$

This implies that $S^n_{m,k} = k$ for every k, $m \leq k \leq 2m$, by virtue of (5). This completes the proof.

References

Department of Mathematics, Faculty of Education, Saitama University, Urawa, Japan