A construction of a subspace in Euclidean space with designated values of dimension and metric dimension
HTML articles powered by AMS MathViewer
- by Tatsuo Goto
- Proc. Amer. Math. Soc. 118 (1993), 1319-1321
- DOI: https://doi.org/10.1090/S0002-9939-1993-1189543-X
- PDF | Request permission
Abstract:
For every integer $m,k$, and $n$ such that $0 \leqslant m \leqslant n - 1$ and $m \leqslant k \leqslant \min \{ 2m,n - 1\}$, we construct a subspace $S_{m,k}^n$ in Euclidean $n$space ${{\mathbf {R}}^n}$ satisfying the conditions that $\mu \dim S_{m,k}^n = m$ and $\dim S_{m,k}^n = k$, where $\mu \dim$ denotes the metric dimension.References
- Ryszard Engelking, Teoria wymiaru, Biblioteka Matematyczna, Tom 51. [Mathematics Library, Vol. 51], Państwowe Wydawnictwo Naukowe, Warsaw, 1977 (Polish). MR 0482696
- Tatsuo Goto, Metric dimension of bounded subspaces of Euclidean spaces. I, II, Topology Proc. 16 (1991), 45–51, 53–56. MR 1206452
- Miroslav Katětov, On the relation between the metric and topological dimension, Czechoslovak Math. J. 8(83) (1958), 163–166 (Russian, with English summary). MR 105084
- James B. Wilkinson, A lower bound for the dimension of certain $G_{\delta }$ sets in completely normal spaces, Proc. Amer. Math. Soc. 20 (1969), 175–178. MR 238283, DOI 10.1090/S0002-9939-1969-0238283-6
Bibliographic Information
- © Copyright 1993 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 118 (1993), 1319-1321
- MSC: Primary 54F45; Secondary 55M10
- DOI: https://doi.org/10.1090/S0002-9939-1993-1189543-X
- MathSciNet review: 1189543