THE HAUSDORFF DIMENSION OF THE NONDIFFERENTIABILITY SET OF THE CANTOR FUNCTION IS $[\ln(2)/\ln(3)]^2$

RICHARD DARST

(Communicated by Andrew M. Bruckner)

Abstract. The main purpose of this note is to verify that the Hausdorff dimension of the set of points N^* at which the Cantor function is not differentiable is $[\ln(2)/\ln(3)]^2$. It is also shown that the image of N^* under the Cantor function has Hausdorff dimension $\ln(2)/\ln(3)$. Similar results follow for a standard class of Cantor sets of positive measure and their corresponding Cantor functions.

The Hausdorff dimension of the set of points N^* at which the Cantor function is not differentiable is $[\ln(2)/\ln(3)]^2$.

Chapter 1 in [5] provides a nice introduction to Hausdorff measure and dimension; references [5-7] pursue the topic. We begin our proof with some notation and discussion. Let C denote the Cantor set. Let $N^+ (N^-)$ denote the set of points at which the Cantor function does not have a right side (left side) derivative, finite or infinite. Then $N^* = N^+ \cup N^- \cup \{t : t$ is an end point of $C\}$ denotes the nondifferentiability set of the Cantor function. Although we will assume familiarity with [4], where Eidswick characterized N^*, some material is repeated for completeness.

A number t in C has a ternary representation $t = (t_1, \ldots, t_i, \ldots)$, where $t_i = 0$ or 2.

Let $z(n)$ denote the position of the nth zero in the ternary representation of t;

1a) If $t \in N^+$, then $\limsup \{z(n+1)/z(n)\} \geq \ln(3)/\ln(2)$;

1b) $\limsup \{z(n+1)/z(n)\} > \ln(3)/\ln(2)$, then $t \in N^+$.

Let m_d denote the d-dimensional Hausdorff measure, and put $r = \ln(2)/\ln(3)$.

We will compute the Hausdorff dimension of N^* by verifying

(A) If $1 \geq d > r^2$, then $m_d N^* = 0$.

(B) If $d < r^2$, then $m_d N^* \geq K_d > 0$; K_d will be specified later for a sequence of d's increasing to r^2.

Condition (A) will be verified for each d satisfying the inequalities $1 \geq d > r^2$ by constructing a set E (depending on d) which contains N^* and satisfies the equation $m_d E = 0$. To verify (B), we will consider a sequence $\{d_n\}$ of
d's increasing to \(r^2 \); for each \(d \) in the sequence, we will construct a subset \(E^* \) of \(N^* \) with \(m_d(E^*) > 0 \), which implies \(m_h(N^*) \geq m_h(E^*) = \infty \) for \(h < d \). (A) implies \(m_h(N^*) = 0 \) for \(h > r^2 \), and (B) implies \(m_h(N^*) = \infty \) for \(h < r^2 \). Consequently, the Hausdorff dimension of \(N^* \) is equal to \(r^2 \).

Verification of (A). We will use sets \(E_k = \{ t: t_k = 0 \text{ and } t_i = 2 \text{ for } k < i \leq u_k \} \), where \(u_k \) will be specified below.

Fix \(d > r^2 \). We will define a positive integer \(n \) (depending on \(d \)) and \(u_k \) for \(k \geq n \) so

\[
N^+ \subseteq \bigcup_{k \geq m} E_k, \quad m \geq n: N^+ \subseteq \limsup\{E_k\} = E^*
\]

and

\[
2^k/(3^{u_k})^d \leq k^{-2}: k \ln(2) - du_k \ln(3) \leq -2 \ln(k) : \quad r + (2/\ln(3))(\ln(k)/k) \leq d(uk/k).
\]

The required strings of 2's in the points of \(E^* \) will be short enough to apply (1a) to verify (2), and they will be long enough to satisfy (3). Since \(d > r^2 \), put \(d = r(r + t) \), where \(t > 0 \). Then \(t = (d - r^2)/r < 1/a^* \). Choose \(n \geq 3 \) so that

\[
\ln(n)/n < t/4.
\]

Then \(\ln(m)/m \) is decreasing for \(m \geq n \) and \(1/n < t/4 \). Thus, for \(k \geq n \) we can choose \(u_k \) so that

\[
r^{-1} - t/2 < u_k/k < r^{-1} < t/4.
\]

According to (4) and the first inequality in (5), for \(k \geq n \),

\[
r + (2/\ln(3))(\ln(k)/k) < r + 2(\ln(k)/k) < r + t/2
\]

\[
= r + t - t/2 < r + t - d(t/2) = d(r^{-1} - t/2) < d(uk/k),
\]

so (3) is satisfied for \(k \geq n \).

Referring to (1a) and the second inequality in (5), (2) is satisfied. To show that \(m_d(\limsup\{E_k\}) = m_d(E^*) = 0 \), it suffices to observe that since each \(E_i \) can be covered with \(2^{i-1} \) intervals of length \(3^{-u_i} \), then

\[
m_d(E^*) \leq \lim_k \sum_{i \geq k} 2^i / (3^{u_i})^d \leq \lim_k \sum_{i \geq k} i^{-2} = 0.
\]

Consequently, \(m_d N^+ = 0 \). Similarly, \(m_d N^- = 0 \); thus, \(m_d N^* = 0 \).

Verification of (B). For \(d = rsv \), where \(s = (n - 1)/n \) and \(v = rs \), we will construct a subset \(E = E_n \) of \(N^+ \) with \(m_d E \geq K = PQR \), where \(P \) and \(Q \) are positive numbers that will be defined later and \(R \) is a positive constant relating \(m_d \) and the equivalent \(d \)-dimensional net measure \((\text{ter})_d \) obtained by requiring covers to be composed of ternary intervals \([a, b] = [i/3^k, (i + 1)/3^k]\) (which we call \(k \)-intervals) according to the inequality \(m_d \geq R(\text{ter})_d \). The existence of \(R \) follows from a variation on a theme of Besicovitch that is discussed in [5, §5.1; 7, Chapter 2, §7.1]; we are using closed ternary intervals, but only countably many end points are involved in intersections. Since \(m_d \geq R(\text{ter})_d \), we verify (B) by establishing the inequality \((\text{ter})_d E \geq PQ \) below.

Covers are required to be ternary covers in the following discussion.
We begin by describing a generic set E of the type to be used; E corresponds to a sequence $0 < k_1 < u_1 < k_2 < u_2 < \cdots$ of positive integers as follows:

$$E = \{ t = (t(1), t(2), \ldots): t(k_i) = 0 \text{ and } t(k) = 2 \text{ for } k_i < k \leq u_i, \ i \geq 1 \}.$$

The set E is a closed subset of C and is composed of non-end-points of C.

When $k_i \leq k \leq u_i$, k is a fixed choice (for E); otherwise, k is a free choice.

The strings of fixed choices will be long enough to make the points in E satisfy (1b), and the strings of free choices will be long enough to assure $P > 0$ and $Q > 0$.

Let $F(p, q)$ denote the number of free choices k with $p < k \leq q$.

Because of [4, Theorem 1] and the fact that

$$\liminf(3^{z(n)/2^{z(n+1)}}) \leq \liminf(3^{k_i}/2^{u_i}),$$

E is a subset of N^+ if $\inf_i(u_i/k_i) > \ln 3/\ln 2$. In particular, recalling the definition of u, E is a subset of N^+ if $u_i = v^{-1}k_i + r_i$, where $0 \leq r_i < 1$.

Let $\{(a_j, b_j)\}$ be a ternary cover of E. Since E contains no end point of C, $\{(a_j, b_j)\}$ is an open cover of E; E is compact, so we restrict attention to a finite subcover. We can also require $b_j \leq a_{j+1}$ and that $[a_j, b_j] \cap E$ be nonempty. Let $3^{-w} = \min\{b_j - a_j\}$. For $k > w$, a k-interval $U = [i/3^k, (i + 1)/3^k]$ intersects at most one (a_j, b_j); if this intersection is nonempty, then $U \subseteq [a_j, b_j]$.

The k_i's and u_i's considered below are all $> w$. To prove $\text{ter}_d E \geq P Q$, it suffices to specify positive constants P and Q satisfying

(C) $m_d[a_j, b_j] \geq P$ (number of u_i-intervals in $[a_j, b_j]) 3^{-u_i}d$

(D) (number of u_i-intervals which intersect $E) 3^{-u_i}d \geq Q$.

Letting $[i/3^k, (i + 1)/3^k]$ denote a generic $[a_j, b_j]$, we rewrite (C) and (D) as

(C) $3^{-kd} \geq P 2^F(k, k_i)/3^{u_i}d$

(D) $2^{F(0, k_i)}/3^{u_i}d \geq Q$.

Define u_i by the equation $u_i = v^{-1}k_i + r_i$, $0 \leq r_i < 1$. Thus, the points in E satisfy (1b).

Define k_{i+1} by specifying $F(0, k_{i+1}) = s(k_{i+1} + s_{i+1}$, where $0 \leq s_{i+1} < 1$ and s_{i+1} is minimal. Such a choice is possible because for $1 < f < k$,

$$f/k - (f - 1)/(k - 1) = (k - f)/[k(k - 1)] < k^{-1}.$$

This definition of k_{i+1} provides enough free choices to assure $P > 0$ and $Q > 0$.

Verification of (C).

$$3^{-kd} \geq P 2^F(k, k_i)/3^{u_i}d \Leftrightarrow 3^{(u_i-k)d} \geq P 2^F(k, k_i) \Leftrightarrow 2^{u_i-k}sv P 2^F(k, k_i) \Leftrightarrow 1 \geq P 2^{F(k, k_i) - vs[u_i-k]}.$$

Put $h(k, i) = F(k, k_i) - sv(u_i - k)$. If $k_j \leq k \leq u_j$, then $h(k, i) \leq h(u_j, i)$; and if $u_{j-1} < k < k_j$, then $h(k, i) < h(u_{j-1}, i)$. Thus, it suffices to show that $h(u_j, i)$ is bounded for $j < i$.

$$F(u_j, k_i) - sv(u_i - u_j) = [(sk_i + s_i) - (sk_j + s_j)] - sv[(v^{-1}k_i + r_i) - (v^{-1}k_j + r_j)]$$

$$= [s_i - s_j] - sv[r_i - r_j] < 1 + sv.$$

Hence, we put $P = 2^{-1+sv}$.
Verification of (D). \(F(0, k_i) = sk_i + s_i, u_i d = (v^{-1}k_i + r_i)rsv = rs(k_i + vr_i), \) and \(3' = 2; \) consequently, \(2F(0, k_i)/3u_i d = 2(s_i - svr_i) \geq 2^{-sv}. \) Thus, putting \(Q = 2^{-sv}, \) we have shown that the Hausdorff dimension of \(N^* \) is \(r^2. \)

Now we can get some free results about Hausdorff dimension. Denote the Cantor function by \(\phi. \)

The Hausdorff Dimension of \(\phi(N^*) \) is \(\ln(2)/\ln(3). \)

This result follows straightforwardly from our previous work because the binary representation of \(\phi(t) \) is obtained by replacing the 2's in the ternary representation of \(t \) by 1's. Consequently, since \(3' = 2 \) and intervals of length \(3^{-k} \) correspond to intervals of length \(2^{-k} \) when we go from the ternary representation of \(t \) to the binary representation of \(\phi(t), \) we can replace \(r^2 \) by \(r \) and \((\text{ter})_d \) by \((\text{bin})_d \) and modify the preceding arguments appropriately to verify that the Hausdorff Dimension of \(\phi(N^*) \) is \(\ln(2)/\ln(3). \)

Referring to [1–3], denote the standard Cantor set of measure \(1 - \lambda \) by \(C_\lambda, 0 < \lambda < 1; \) denote the corresponding Cantor functions by \(\phi_\lambda \) and the corresponding nondifferentiability sets by \(N_\lambda^*. \)

The sets \(N_\lambda^* \) and \(\phi_\lambda(N_\lambda^*) \) have Hausdorff dimension \(\ln(2)/\ln(3), \) \(0 < \lambda < 1. \)

This assertion follows from the descriptions of the \(\phi_\lambda \)'s given in [1], Theorems 2 and 3 in [3], and the results previously established in this note. Intervals generated in the description of \(C_\lambda \) as an intersection of finite unions of \(2^k \) intervals of length \(L_k \) have \(L_k = (1 - \lambda)2^{-k} + \lambda 3^{-k}. \) The binary part of \(L_k \) overwhelms the ternary component; thus, variations of the arguments used to compute the Hausdorff dimension of \(\phi(N^*) \) suffice here.

References

Department of Mathematics, Colorado State University, Fort Collins, Colorado 80523