LOCAL ISOGENY THEOREM FOR DRINFELD MODULES WITH NONINTEGRAL INVARIANTS

SUNGHAN BAE AND PYUNG-LYUN KANG

(Communicated by William W. Adams)

Abstract. An isogeny theorem for the Drinfeld modules of rank 2 over a local field analogous to that of elliptic curves is proved.

0. Introduction

Let k be a global function field over a finite constant field F_q. Drinfeld introduced the notion of elliptic modules, which are now known as Drinfeld modules, on k in analogy with classical elliptic curves. Hayes also studied this independently to generate certain class fields of k.

Drinfeld modules of rank 2 have many interesting properties analogous to those of elliptic curves. We fix k to be the rational function field $F_q(T)$. In [1] we introduced the Tate parametrization of Drinfeld modules of rank 2 with nonintegral invariants over a complete field. In this article we use the description of division points of Tate-Drinfeld modules and the methods in [6, 7] to get an isomorphism theorem for Drinfeld modules over a field with some restrictions on t and t'. In other words, there exist a and b in $A = F_q[T]$ such that $\rho_a(t^{-1}) - \rho_b(t'^{-1})$ is integral. This restriction does not appear in the classical case because α/β is a unit if the valuations of α and β are equal.

From now on Drinfeld modules always mean Drinfeld modules of rank 2 defined on $A = F_q[T]$.

1. Tate-Drinfeld modules

In this section we give a quick review of Tate-Drinfeld modules, which are the function field analogues of Tate elliptic curves [1]. Let $k = F_q(T)$ and $k_\infty = F_q((T))$, and let C be the completion of the algebraic closure of k_∞. Let π be an element of C associated to the Carlitz module

$$\rho_T = TX + X^q.$$

Any rank 2 Drinfeld module ϕ over C on $A = F_q[T]$ is completely determined by

$$\phi_T = TX + \pi^{1-q} g X^q + \pi^{1-q^2} \Delta X^q.$$

Received by the editors April 29, 1991 and, in revised form, January 16, 1992.

1991 Mathematics Subject Classification. Primary 11G09, 11R58.

Partially supported by KOSEF Research Grant 91-08-00-07.
Then g and Δ are modular forms on $\Omega = C - K_\infty$ for $\text{GL}_2(A)$ of weight $q - 1$ and $q^2 - 1$, respectively. Let

$$t = t(z) = e^{-1}(\pi z)$$

where

$$e(z) = z \prod_{a \in A} \left(1 - \frac{z}{a\pi}\right).$$

Then g and Δ have t-expansions with coefficients in A [3].

Now let K be a complete field containing k and $\delta > 0$ a real number so that $g(t)$ and $\Delta(t)$ converge for $|t| < \delta$. For $t \in K$ with $|t| < \delta$, we define the Tate-Drinfeld module associated to t by

$$\phi_t^{(t)} = TX + g(t)X^q + \Delta(t)X^{q^2}.$$

The Tate-Drinfeld map $e_{(t)}$ is defined to be

$$e_{(t)}(u) = u \prod_{a \in A} \left(1 - \frac{u}{\rho_a(t)}\right).$$

Remark 1.1. If one views K as an A-module via ρ (i.e., $a \cdot x = \rho_a(x)$ for $a \in A$, $x \in K$), then $e_{(t)}$ has exactly the same form as the exponential map $e_{A}(z)$ associated to the lattice $A \cdot t^{-1}$.

The following is given in [1].

Proposition 1.2. (i) The set D_t of zeros of $e_{(t)}$ is $D_t = \{\rho_a(t^{-1}) : a \in A\}$.

(ii) $e_{(t)}(u + v) = e_{(t)}(u) + e_{(t)}(v)$.

(iii) $\phi_a^{(t)}(e_{(t)}(u)) = e_{(t)}(\rho_a(u))$.

Remark 1.3. In the classical case, the Tate map is a homomorphism from the multiplicative group K^* to the elliptic curve. Proposition 1.2 says that the Tate-Drinfeld map is an A-module homomorphism from \overline{K} with A-module structure given by the Carlitz module to \overline{K} with A-module structure given by the Tate-Drinfeld module $\phi_t^{(t)}$.

Proposition 1.4. For $a \in A$, let $t_a = 1/\rho_a(t)$. Then $\phi_t^{(t)}$ and $\phi_t^{(t_a)}$ are isogenous.

Proposition 1.5. Let

$$D_t^{1/a} = \{u \in \overline{K} : \rho_a(u) \in D_t\},$$

where \overline{K} is the algebraic closure of K. Then $e_{(t)}$ induces a Galois isomorphism of $D_t^{1/a}/D_t$ with $\text{Ker} \phi_a^{(t)}$.

2. p-adic representation and Kummer theory

Let $p = (p(T))$ be a prime ideal of $A = \mathbb{F}_q[T]$, where $p(T)$ is a monic irreducible polynomial in A. Let ϕ be a Drinfeld module of rank 2. Then $\text{Ker} \phi_{p(T)n}$ has a natural structure of an A/p^n-module. Hence

$$T_p(\phi) = \lim \text{Ker} \phi_{p(T)n}$$

is an A_p-module, where

$$A_p = \lim A/p^n.$$
Let
\[V_p(\phi) = T_p(\phi) \otimes A_p k_p. \]

Now let \(K \) be a finite extension of \(k_p \) and \(\phi^{(t)} \) be a Tate-Drinfeld module of rank 2 over \(K \) associated to \(t \) with \(|t| < 1 \). We use \(1 \) instead of \(\delta \) because \(A \) is contained in the ring of integers of \(K \) and the coefficients of \(g \) and \(\Delta \) are in \(A \).

If \(z \in D_t^{1/p(T)^n} \), then \(\rho_{p(T)^n}(z) \) lies in \(D_t \). Hence there is an element \(a \in A \) such that \(\rho_{p(T)^n}(z) = \rho_a(t^{-1}) \). The association \(z \mapsto a \mod p^n \) defines a homomorphism of \(\Lambda_{p(T)^n} = \text{Ker } \phi^{(t)}_{p(T)^n} \) onto \(A/p^n \). Hence the Tate-Drinfeld map gives rise to an exact sequence

\[0 \rightarrow R_n \rightarrow \Lambda_{p(T)^n} \rightarrow A/p^n \rightarrow 0 \]

of \(A[G] \)-modules, where \(G = \text{Gal}(\overline{K}/K) \) and \(R_n \) is the set of \(p(T)^n \)th roots of \(\rho \) (i.e., \(\text{Ker } \rho_{p(T)^n} \)). By taking the limits, we obtain an exact sequence of \(A_p[G] \)-modules

\[0 \rightarrow T_p(R) \rightarrow T_p(\phi^{(t)}) \rightarrow A_p \rightarrow 0 \]

and tensoring with \(k_p \), we get an exact sequence

\[0 \rightarrow V_p(R) \rightarrow V_p(\phi^{(t)}) \rightarrow k_p \rightarrow 0 \]

where \(G \) acts on \(A_p \) and \(k_p \) trivially.

We will show that the sequence (3) does not split. To do this we introduce an invariant \(x \), which belongs to the \(A \)-module \(\lim H^1(G, R_n) \). Let \(d \) be the coboundary map

\[d : H^0(G, A/p^n) \rightarrow H^1(G, R_n) \]

with respect to the sequence (1), and let \(x_n = d(1) \). Let \(x \) be an element of \(\lim H^1(G, R_n) \) defined by the family \(\{x_n\} \), \(n \geq 1 \).

From the exact sequence of \(A[G] \)-modules

\[0 \rightarrow R_n \rightarrow \overline{K}^{\rho_{p(T)^n}} \rightarrow \overline{K} \rightarrow 0, \]

we have an isomorphism \(\delta : K/\rho_{p(T)^n}(K) \rightarrow H^1(G, R_n) \), since \(H^1(G, \overline{K}) = 0 \) by Hilbert’s Theorem 90.

Proposition 2.1. (a) The isomorphism \(\delta : K/\rho_{p(T)^n}(K) \rightarrow H^1(G, R_n) \) transforms the class of \(t^{-1} \mod \rho_{p(T)^n}(K) \) into \(x_n \).

(b) The element \(x \) is \(A \)-torsion free.

Proof. (a) follows easily from the definition of \(x_n \) and \(\delta \). To prove (b), suppose that \(a \cdot x = \rho_a(x) = 0 \) for some \(a \in A \). Then

\[a \cdot t^{-1} = \rho_a(t^{-1}) \in \rho_{p(T)^n}(K) \]

for every \(n \) by (a). Let \(v \) be the discrete valuation on \(K \). Then

\[v(\rho_a(t^{-1})) = v(t^{-1})q^{\deg a}, \]

\[v(\rho_{p(T)^n}(\alpha_n)) = v(\alpha_n)q^n \deg p(T). \]

But \(\rho_a(t^{-1}) = \rho_{p(T)^n}(\alpha_n) \) implies that

\[v(\alpha_n) = v(t^{-1})q^{\deg a - n \deg p(T)}. \]
But for sufficiently large n, (4) implies that $v(\alpha_n)$ is not an integer, which is impossible.

Corollary 2.2. The exact sequence (3) does not split.

Proof. Exactly the same proof as in [6, 7], replacing \mathbb{Z}_p by A_p and p by $p(T)$ would give the result.

3. Local isogeny theorem

In this section, we will prove the following local isogeny theorem.

Theorem 3.1. Let K be a finite extension of k_p and \mathcal{O} the ring of integers in K. Let v be the discrete valuation on K and $t, t' \in K^*$ with $v(t)$ and $v(t') > 0$. Let $\phi = \phi(t)$ and $\phi' = \phi(t')$ be the corresponding Tate-Drinfeld modules over K. Suppose that there exist $a, b \in A - \{0\}$ such that $\rho_a(t^{-1}) - \rho_b(t')^{-1}$ lies in \mathcal{O}. Then ϕ and ϕ' are isogenous if and only if $V_p(\phi)$ and $V_p(\phi')$ are isomorphic as $k_p[G]$-modules.

Proof. The ‘only if’ part is trivial. To show the other direction, it suffices to show that there exist elements $\alpha, \beta \in A$ such that $\rho_\alpha(t) = \rho_\beta(t')$ by Proposition 1.2. Let $\varphi : V_p(\phi) \to V_p(\phi')$ be a G-isomorphism. By Corollary 2.2, φ maps $V_p(R)$ into itself. After multiplying φ by some element of A_p, we may assume that φ maps $T_p(\phi)$ into $T_p(\phi')$. Then we have a commutative diagram

$$
\begin{array}{c}
0 \rightarrow T_p(R) \rightarrow T_p(\phi) \rightarrow A_p \rightarrow 0 \\
\downarrow r \quad \downarrow \varphi \quad \downarrow s \\
0 \rightarrow T_p(R) \rightarrow T_p(\phi') \rightarrow A_p \rightarrow 0
\end{array}
$$

where $r, s \in A_p$. Let x and x' be the invariants in $\lim H^1(G, R_n)$ associated to ϕ and ϕ', respectively, given in the previous section. Then the commutativity of (5) shows that $r \cdot x = s \cdot x'$, that is, writing $r = (r_n)$ and $s = (s_n)$, with $\deg r_n < \deg p(T)^n$ and $\deg s_n < \deg p(T)^n$,

$$
\rho_r(x_n) = \rho_s(x'_n)
$$

in $H^1(G, R_n)$. Therefore $\rho_r(t^{-1}) = \rho_s(t'^{-1})$ in $\lim K/\rho_p(T)^n(K)$ by Proposition 2.1. Let $z = \rho_a(t^{-1}) - \rho_b(t'^{-1}) \in \mathcal{O}$.

Then

$$
\rho_{sa - rb}(t^{-1}) = \rho_{sa}(t^{-1}) - \rho_{rb}(t^{-1}) = \rho_s(\rho_b(t'^{-1}) + z) - \rho_r(t^{-1})
$$

$$
= \rho_b(\rho_s(t'^{-1}) - \rho_r(t^{-1})) + \rho_s(z).
$$

Write $u = sa - rb = (u_n)$, with $\deg u_n < \deg p(T)^n$. Since $\rho_s(t'^{-1}) - \rho_r(t^{-1}) = 0$ in $\lim K/\rho_p(T)^n(K)$ and $\rho_a \rho_b = \rho_b \rho_a$, there exists $\alpha_n \in K$ such that

$$
\rho_{u_n}(t^{-1}) = \rho_p(T)^n(\alpha_n) + \rho_s(z), \quad v(\alpha_n) \leq 0.
$$

Suppose that $u = (u_n) \neq 0$. Then for all sufficiently large n,

$$
\gcd(u_n, p(T)^n) = p(T)^k
$$
for some fixed \(k < n \). Then there are \(c_n, d_n \in A \) such that
\[
c_n u_n + d_n p(T)^n = p(T)^k.
\]
Hence
\[
\rho_{p(T)^k}(t^{-1}) = \rho_{c_n u_n + d_n p(T)^n}(t^{-1})
\]
\[
= \rho_{p(T)^n}(\rho_{c_n}(\alpha_n) + \rho_{d_n}(t^{-1})) + \text{integral}
\]
\[
= \rho_{p(T)^n}(\beta_n) + \text{integral}, \quad \beta_n \in K.
\]

Then \(\rho_{p(T)^k}(t^{-1} - \rho_{p(T)^{n-k}}(\beta_n)) \) is integral, and so \(t^{-1} - \rho_{p(T)^{n-k}}(\beta_n) \) is integral for all large \(n \), which is impossible. Therefore \(u = 0 \). Hence \(sa = rb \) and \(\rho_s(z) = 0 \) in \(\lim K/p(T)^n(K) \).

Then
\[
(6) \quad \rho_{s_n}(z) = \rho_{p(T)^n}(\beta_n).
\]
Let \(k = v(s) \), the valuation of \(s \) in \(k_p \). Then \(\gcd(s_n, p(T)^n) = p(T)^k \) for \(n \geq k \). Hence there exist \(a_n \) and \(b_n \) in \(A \) such that \(a_n s_n + b_n p(T)^n = p(T)^k \).

From (6) we have
\[
\rho_{p(T)^k}(z) = \rho_{a_n s_n + b_n p(T)^n}(z) = \rho_{a_n}(\rho_{s_n}(z)) + \rho_{p(T)^n}(\rho_{b_n}(z))
\]
\[
= \rho_{a_n}(\rho_{p(T)^n}(\beta_n)) + \rho_{p(T)^n}(\rho_{b_n}(z))
\]
\[
= \rho_{p(T)^n}(\rho_{a_n}(\beta_n) + \rho_{b_n}(z)).
\]
Therefore \(u = \rho_{p(T)^n}(z) = 0 \) in \(\lim K/p(T)^n(K) \). The proof is complete if we show that \(u \) is a root of \(\rho_c \) for some \(c \in A \). Let \(\mathfrak{q} \) be the maximal ideal of \(\mathcal{O} \) and the residual class degree of \(\mathcal{O}/\mathfrak{q} \) be \(m \). Since \(p(T) \in \mathfrak{q} \) and
\[
\rho_{p(T)^n}(X) \equiv X^{n \deg p(T)} \pmod{p(T)}
\]
we have
\[
\rho_{p(T)^{m-1}}(u) \equiv 0 \pmod{\mathfrak{q}}.
\]
Let \(u' = \rho_{p(T)^{m-1}}(u) \). Then \(v(u') > 0 \). Since \(u' = 0 \) in \(\lim K/p(T)^n(K) \), there is a sequence \(\{\delta_n\} \) in \(K \) with \(u' = \rho_{p(T)^n}(\delta_n) \). Since \(v(u') > 0 \), we have \(v(\delta_n) > 0 \). In this case it is easy to see that
\[
v(\rho_{p(T)^n}(\delta_n)) \to \infty \quad \text{as} \quad n \to \infty.
\]
Hence \(u' = \lim \rho_{p(T)^n}(\delta_n) = 0 \), and we are done.

Remark 3.2. The \(j \)-invariant \(j_t \) of \(\phi(t) \) is defined to be \(j_t = g(t)^{q+1}/\Delta(t) \). It is shown in [3] that
\[
j_t = \frac{1}{t^{q-1}} + \text{power series in } t^{q-1}.
\]
Hence \(j_t \) is nonintegral iff \(v(t) > 0 \).

Remark 3.3. (a) The proof of Theorem 3.1 is quite similar to that of the classical case except the use of the assumption that \(\rho_a(t^{-1}) - \rho_b(t'^{-1}) \) lies in \(\mathcal{O} \). The comparison is shown in the following table:
<table>
<thead>
<tr>
<th>Elliptic curve case</th>
<th>Drinfeld module case</th>
</tr>
</thead>
<tbody>
<tr>
<td>(q, q')</td>
<td>(t^{-1}, t'^{-1})</td>
</tr>
<tr>
<td>(v(q), v(q') \in \mathbb{Z})</td>
<td>(a, b \in A)</td>
</tr>
<tr>
<td>(\alpha = q^{v(q')}/q'^{v(q)})</td>
<td>(z = \rho_a(t^{-1}) - \rho_b(t'^{-1}))</td>
</tr>
<tr>
<td>root of unity</td>
<td>torsion points of (\rho)</td>
</tr>
</tbody>
</table>

In the elliptic curve case, for each element \(q \in K^* \), there is a naturally associated integer \(v(q) \), the valuation of \(q \). The fact that \(\alpha = q^{v(q')}/q'^{v(q)} \) is a unit in \(\mathcal{O} \) is used in the proof. In our case, there is no natural element of \(A \) associated to an element \(t \in K \), however, we need some elements \(a \) and \(b \) in \(A \), which make \(z = \rho_a(t^{-1}) - \rho_b(t'^{-1}) \) to be integral in order to prove that

(i) \(sa = rb \),

(ii) \(z \) is a torsion point of \(\rho \).

(b) The condition that \(\rho_a(t^{-1}) - \rho_b(t'^{-1}) \) lies in \(\mathcal{O} \) is not necessary if \(0 < v(t), v(t') < q \). Indeed, in the proof we showed that

\[
\rho_{s_n}(t^{-1}) - \rho_{s_n}(t'^{-1}) = \rho_{p(T)^n}(\alpha_n)
\]

for some \(\alpha_n \in K \) with \(\deg r_n, \deg s_n < \deg p(T)^n \). Then

\[
v(\rho_{r_n}(t^{-1})) = v(t^{-1}) \cdot q^{\deg r_n} > -q^{1+\deg r_n} \geq -q^{n \deg p(T)'}
\]

and

\[
v(\rho_{s_n}(t'^{-1})) = v(t'^{-1}) \cdot q^{\deg s_n} > -q^{1+\deg s_n} \geq -q^{n \deg p(T)}.
\]

Thus

\[
v(\alpha_n)q^n \deg p(T) = v(\rho_{r_n}(t^{-1}) - \rho_{s_n}(t'^{-1})) > -q^n \deg p(T)
\]

since \(v(\alpha_n) \) is an integer, \(v(\alpha_n) \geq 0 \). Then \(\rho_{p(T)^n}(\alpha_n) \) lies in \(\mathcal{O} \), as does \(\rho_{r_n}(t^{-1}) - \rho_{s_n}(t'^{-1}) \). Hence one may take \(a = r_n \), \(b = s_n \) for any \(n \).

(c) The existence of the condition prevents one from getting the global isogeny theorem. Thus one may ask: “Do there exist \(a \) and \(b \) so that \(\rho_a(t^{-1}) - \rho_b(t'^{-1}) \) lies in \(\mathcal{O} \) only assuming that \(v(t), v(t') > 0 \) and \(V_p(\phi) \) and \(V_p(\phi') \) are \(G \)-isomorphic?”

Remark 3.4. One might be able to replace \(A \) by a more general function ring \(B \) to get the similar result. But there are some problems to be resolved primarily because \(B \) is not a principal ideal domain. For example,

(i) One should consider a family of Tate-Drinfeld modules \(\phi(b) \) for each ideal class (b) of \(B \).

(ii) To each \(\phi(b) \) one must replace the Carlitz module by the sign normalized rank 1 Drinfeld module \(\rho^{(b)} \), which is defined over the Hilbert class field of \(B \). Hence we need more restrictions on the complete field \(K \) to make \(\rho^{(b)} \) Galois invariant.

(iii) One must define invariants of Drinfeld modules of rank 2 on \(B \) to get the analogue of Proposition 1.4.
References

Department of Mathematics, Korea Advanced Institute of Science and Technology, Taejon, 305-701, Korea

Hongik University, Jochiwon, Chungchungnamdo, 339-800, Korea