Injective morphisms of affine varieties
HTML articles powered by AMS MathViewer
- by Ming Chang Kang
- Proc. Amer. Math. Soc. 119 (1993), 1-4
- DOI: https://doi.org/10.1090/S0002-9939-1993-1146862-0
- PDF | Request permission
Abstract:
In this note an elementary proof that every injective morphism from an affine variety into itself is necessarily surjective is given.References
- James Ax, The elementary theory of finite fields, Ann. of Math. (2) 88 (1968), 239–271. MR 229613, DOI 10.2307/1970573
- James Ax, Injective endomorphisms of varieties and schemes, Pacific J. Math. 31 (1969), 1–7. MR 251036
- Hyman Bass, Edwin H. Connell, and David Wright, The Jacobian conjecture: reduction of degree and formal expansion of the inverse, Bull. Amer. Math. Soc. (N.S.) 7 (1982), no. 2, 287–330. MR 663785, DOI 10.1090/S0273-0979-1982-15032-7
- A. Białynicki-Birula, Remarks on the action of an algebraic torus on $k^{n}$, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 14 (1966), 177–181 (English, with Russian summary). MR 200279
- Andrzej Białynicki-Birula and Maxwell Rosenlicht, Injective morphisms of real algebraic varieties, Proc. Amer. Math. Soc. 13 (1962), 200–203. MR 140516, DOI 10.1090/S0002-9939-1962-0140516-5
- A. Borel, Injective endomorphisms of algebraic varieties, Arch. Math. (Basel) 20 (1969), 531–537. MR 255545, DOI 10.1007/BF01899460
- A. Grothendieck, Éléments de géométrie algébrique. IV. Étude locale des schémas et des morphismes de schémas. III, Inst. Hautes Études Sci. Publ. Math. 28 (1966), 255. MR 217086
- Ming Chang Kang, Picard groups of some rings of invariants, J. Algebra 58 (1979), no. 2, 455–461. MR 540650, DOI 10.1016/0021-8693(79)90172-8
- Masayoshi Nagata, Local rings, Interscience Tracts in Pure and Applied Mathematics, No. 13, Interscience Publishers (a division of John Wiley & Sons, Inc.), New York-London, 1962. MR 0155856
- Donald J. Newman, One-one polynomial maps, Proc. Amer. Math. Soc. 11 (1960), 867–870. MR 122817, DOI 10.1090/S0002-9939-1960-0122817-8
- Goro Shimura, Reduction of algebraic varieties with respect to a discrete valuation of the basic field, Amer. J. Math. 77 (1955), 134–176. MR 66687, DOI 10.2307/2372425
- Goro Shimura, On the theory of automorphic functions, Ann. of Math. (2) 70 (1959), 101–144. MR 107645, DOI 10.2307/1969894
- Goro Shimura and Yutaka Taniyama, Complex multiplication of abelian varieties and its applications to number theory, Publications of the Mathematical Society of Japan, vol. 6, Mathematical Society of Japan, Tokyo, 1961. MR 0125113
Bibliographic Information
- © Copyright 1993 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 119 (1993), 1-4
- MSC: Primary 14A10; Secondary 13B10
- DOI: https://doi.org/10.1090/S0002-9939-1993-1146862-0
- MathSciNet review: 1146862