The special values at negative integers of Dirichlet series associated with polynomials of several variables
HTML articles powered by AMS MathViewer
- by Min King Eie
- Proc. Amer. Math. Soc. 119 (1993), 51-61
- DOI: https://doi.org/10.1090/S0002-9939-1993-1148022-6
- PDF | Request permission
Abstract:
Let $P(X)$ be a product of $k$ linear forms in $r$ variables ${X_1}, \ldots ,{X_r}$ as given by \[ \begin {array}{*{20}{c}} {P({X_1}, \ldots ,{X_r}) = \prod \limits _{j = 1}^k {({a_{j1}}{X_1} + \cdots + {a_{jr}}{X_r} + {\delta _j}),} } \\ {\qquad \qquad \qquad \qquad \qquad \qquad \qquad \quad \operatorname {Re} {a_{ji}} > 0,\;\operatorname {Re} \left ( {{\delta _j} + \sum \limits _{i = 1}^r {{a_{ji}}} } \right ) > 0.} \\ \end {array} \] Suppose that $\beta = ({\beta _1}, \ldots ,{\beta _r})$ is an $r$-tuple of nonnegative integers. Consider the zeta function \[ Z(P,\beta )(s) = \sum \limits _{{n_{1 = 1}}}^\infty { \cdots \sum \limits _{{n_{r = 1}}}^\infty {n_1^{{\beta _1}} \cdots n_r^{{\beta _r}}P{{({n_1}, \ldots ,{n_r})}^{ - s}},\qquad \operatorname {Re} s > \frac {{r + |\beta |}} {k}} } ,\] where $|\beta | = {\beta _1} + \cdots + {\beta _r}$. $Z(P,\beta )(s)$ has an analytic continuation in the whole complex plane and it is regular at $s = 0,\; - 1,\; - 2, \ldots , - m, \ldots$. In this paper, we shall compute the explicit values of $Z(P,\beta )(s)$ at $s = 0,\; - 1,\; - 2, \ldots ,\; - m, \ldots$ and express them in terms of finite sums of polynomials in Bernoulli numbers.References
- Pierrette Cassou-Noguès, Valeurs aux entiers négatifs des séries de Dirichlet associées à un polynôme. I, J. Number Theory 14 (1982), no. 1, 32–64 (French, with English summary). MR 644899, DOI 10.1016/0022-314X(82)90056-7
- Pierrette Cassou-Noguès, Séries de Dirichlet et intégrales associées à un polynôme à deux indéterminées, J. Number Theory 23 (1986), no. 1, 1–54 (French, with English summary). MR 840014, DOI 10.1016/0022-314X(86)90002-8
- Min King Eie, On a Dirichlet series associated with a polynomial, Proc. Amer. Math. Soc. 110 (1990), no. 3, 583–590. MR 1037206, DOI 10.1090/S0002-9939-1990-1037206-0
- I. M. Gel’fand and G. E. Shilov, Generalized functions. Vol. I: Properties and operations, Academic Press, New York-London, 1964. Translated by Eugene Saletan. MR 0166596
- David Kramer, On the values at integers of the Dedekind zeta function of a real quadratic field, Trans. Amer. Math. Soc. 299 (1987), no. 1, 59–79. MR 869399, DOI 10.1090/S0002-9947-1987-0869399-4
- Akira Kurihara, On the values at nonpositive integers of Siegel’s zeta functions of $\textbf {Q}$-anisotropic quadratic forms with signature $(1,\,n-1)$, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 28 (1981), no. 3, 567–584 (1982). MR 656037
- Patrick Sargos, Prolongement méromorphe des séries de Dirichlet associées à des fractions rationnelles de plusieurs variables, Ann. Inst. Fourier (Grenoble) 34 (1984), no. 3, 83–123 (French, with English summary). MR 762695
- I. Satake, Special values of zeta functions associated with self-dual homogeneous cones, Manifolds and Lie groups (Notre Dame, Ind., 1980) Progr. Math., vol. 14, Birkhäuser, Boston, Mass., 1981, pp. 359–384. MR 642867 I. Satake and S. Ogata, Zeta functions associated to cones and their special values, manuscript, 1987.
- Mikio Sato and Takuro Shintani, On zeta functions associated with prehomogeneous vector spaces, Ann. of Math. (2) 100 (1974), 131–170. MR 344230, DOI 10.2307/1970844
- Takuro Shintani, On zeta-functions associated with the vector space of quadratic forms, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 22 (1975), 25–65. MR 0384717
- Takuro Shintani, On evaluation of zeta functions of totally real algebraic number fields at non-positive integers, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 23 (1976), no. 2, 393–417. MR 427231
Bibliographic Information
- © Copyright 1993 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 119 (1993), 51-61
- MSC: Primary 11M41; Secondary 11B68
- DOI: https://doi.org/10.1090/S0002-9939-1993-1148022-6
- MathSciNet review: 1148022