The Hayman-Wu constant
HTML articles powered by AMS MathViewer
- by Knut Øyma
- Proc. Amer. Math. Soc. 119 (1993), 337-338
- DOI: https://doi.org/10.1090/S0002-9939-1993-1149976-4
- PDF | Request permission
Abstract:
The Hayman-Wu constant is at least ${\pi ^2}$.References
- José L. Fernández, Juha Heinonen, and Olli Martio, Quasilines and conformal mappings, J. Analyse Math. 52 (1989), 117–132. MR 981499, DOI 10.1007/BF02820475
- Barbara Brown Flinn, Hyperbolic convexity and level sets of analytic functions, Indiana Univ. Math. J. 32 (1983), no. 6, 831–841. MR 721566, DOI 10.1512/iumj.1983.32.32056
- W. K. Hayman and J. M. G. Wu, Level sets of univalent functions, Comment. Math. Helv. 56 (1981), no. 3, 366–403. MR 639358, DOI 10.1007/BF02566219
- Knut Øyma, Harmonic measure and conformal length, Proc. Amer. Math. Soc. 115 (1992), no. 3, 687–689. MR 1101991, DOI 10.1090/S0002-9939-1992-1101991-1
Bibliographic Information
- © Copyright 1993 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 119 (1993), 337-338
- MSC: Primary 30C85
- DOI: https://doi.org/10.1090/S0002-9939-1993-1149976-4
- MathSciNet review: 1149976